Bangunan air Week #10.

Slides:



Advertisements
Presentasi serupa
Gradually varied flow Week #7.
Advertisements

Gradually varied flow Week #6.
Mekanika Fluida II Week #3.
ALIRAN MELALUI LUBANG DAN PELUAP
Pertemuan 6 <<Judul>>
Hidraulic Radius (Rh) = A A = Luas Penampang P P = Penampang basah
Adhi Muhtadi BANGUNAN BENDUNG.
Saluran dan Bangunan Irigasi
Tugas Mekanika Fluida ‘Kontinuitas’
DASAR-DASAR PERHITUNGAN PENYALURAN AIR BUANGAN
Bangunan Bagi dan Bangunan Sadap
Weir dan Notch Week #10.
Mekanika Fluida II Week #3.
Kuliah Hidraulika Wahyu Widiyanto Teknik Sipil Unsoed
Kuliah Hidraulika Wahyu Widiyanto
Persamaan Manning, Saluran Komposit, Energi Spesifik
HIDROLIKA DAN JENIS ALIRAN DALAM SALURAN
[6.99] He sends down water from the sky, and with it We bring forth the plant of every thing. TL2201 Mekanika Fluida II.
Mekanika Fluida II Week #5.
Mekanika Fluida II Week #4.
Bangunan Bagi.
Bangunan air Week #9.
Bangunan Utama Bangunan Bendung.
Responsi Hidraulika: Aliran BERUBAH LAMBAT LAUN (Profil Aliran)
Mekanika Fluida II Week #4.
PERENCANAAN SALURAN IRIGASI
ALIRAN SERAGAM.
Gradually varied flow Week #8.
HERI SUDIANA PEMODELAN FLUIDA PADA SIMULATOR
Kehilangan Energi pada
DEFINISI DASAR GEOMETRI SALURAN TERBUKA
MEKANIKA FLUIDA Farid Suleman
3. Pengukuran dan Perhitungan Debit Sungai/Saluran Air
Pertemuan 16 Penelusuran Banjir
Nama = Putra Pramugama NIM =
Soal Latihan No. 1 Bila tekanan pada tangki tertutup adalah 140 kPa di atas tekanan atmosfir dan head loss akibat kehilangan energi yang terjadi pada.
Pertemuan Hidrolika Saluran Terbuka
Pertemuan SALURAN TERBUKA
Konsep Aliran Zat Cair Melalui (Dalam) Pipa
ALIRAN MELALUI LUBANG DAN PELUAP
Pertemuan 1 Matakuliah : S0462/IRIGASI DAN BANGUNAN AIR Tahun : 2005
ZUHERNA MIZWAR METFLU - UBH ZUHERNA MIZWAR
Perencanaan Hidraulis
Saluran Terbuka dan Sifat-sifatnya
Kuliah Hidraulika Wahyu Widiyanto
Zuherna Mizwar HIDROLIKA 1 UBH 2017 Zuherna Mizwar
Hidraulika Saluran Terbuka
Kuliah ke-6 PENGENDALIAN SEDIMEN DAN EROSI
Bangunan Utama – 2: - Bangunan Bendung
Pertemuan 6 Saluran dan Bangunan Drainase
Rumus BERNOULLI Rumus Bernoulli  memberikan hubungan antara elevasi, kecepatan dan tekanan suatu cairan Rumus ini juga memberikan ENERGI total dari suatu.
2 a. Instalasi AWLR di DAS Cisukabirus
Aliran Kritis.
Penyiapan Data Geometri HEC-RAS v 4.1
Penggunaan persamaan energi pada aliran berubah cepat
ZUHERNA MIZWAR METFLU - UBH ZUHERNA MIZWAR
HIDROLOGI ‘H I D R O M E T R I’
Bangunan Persilangan Jalur saluran irigasi mulai dari intake hingga bangunan sadap terakhir seringkali harus berpotongan atau bersilangan dengan.
ASPEK HIDRAULIKA Kuliah ke-3 Drainase.
Rumus BERNOULLI Rumus Bernoulli  memberikan hubungan antara elevasi, kecepatan dan tekanan suatu cairan Rumus ini juga memberikan ENERGI total dari suatu.
PENELUSURAN BANJIR (FLOOD ROUTING)
SALURAN PEMBERHENTIAN
HIDROLIKA SALURAN TERBUKA
Mekanika Fluida II Benno Rahardyan.
DRAINASE PERMUKIMAN DAN JALAN RAYA
MATA KULIAH REKAYASA HIDROLOGI DEBIT BANJIR (FLOOD FLOW) (1) BY : NOOR LAILAN HIDAYATI, ST.
PENENTUAN DEBIT BANJIR RANCANGAN METODE RASIONAL MODIFIKASI
Matakuliah : S0634/Hidrologi dan Sumber Daya Air Tahun : 2006 Versi :
PERENCANAAN DIMENSI BANGUNAN SABO PERENCANAAN BANGUNAN SABO
Perkiraan secara kuantitatif dari siklus hidrologi dapat dinyatakan berdasar prinsip konservasi massa yang dikenal dengan persamaan neraca air. Neraca.
Transcript presentasi:

Bangunan air Week #10

Pengukur kedalaman kritis 1. Broad-crested weir

Aliran melalui ambang, tinjauan menggunakan energi spesifik Aliran di atas ambang dan grafik spesifik energi

Nilai H didekati dengan h: Dengan velocity correction factor dan discharge coefficient persamaan menjadi :

2. Flume Aliran kritis diperoleh dengan menyempitkan saluran Seringkali ditambah peninggian dasar saluran untuk memperoleh aliran kritis pada bagian sempitnya  venturi flue

Dari persamaan energi diperoleh : Substitusi ke persamaan energi maka diperoleh : Aliran kritis diperoleh pada bagian leher apabila disubstitusikan maka akan diperoleh Dengan velocity correction factor dan discharge coefficient persamaan menjadi :

Sebuah saluran segiempat dengan lebar 3 m memiliki slope 0,0009 mengalirkan air dengan kedalaman 1.5 m. Diasumsikan n Manning 0,015 dan mengalir menjadi aliran seragam. Hitunglah ketinggian ambang untuk menghasilkan kedalaman kritis.

Latihan Luas penampang A= 3 x 1,5 = 4,5 m2 P = 3 + 2x1,5= 6 m R = A/P = 0,75 m Dari Manning V = 1/n R2/3 S1/2 = 1/0,015 x (0,75) 2/3 x 0,03 = 1,65 m/det Es1= 1,5 + 1,652/2x9,81 = 1,64 m Yc = 2/3 Es = 2/3 x 1,64 = 1,09 m - salah Ketinggian ambang = 0,357 m

Weir / Pelimpah Tajam Q = 2/3 x (2g)1/2 Cd x b x h3/2 (bandingkan dengan rumus untuk ambang lebar, yang menghasilkan Q = 2/3 x (2/3g)1/2 Cv.Cd x b x h3/2

Sebuah weir dengan panjang 4,5 m memiliki head air sebesar 30 cm Sebuah weir dengan panjang 4,5 m memiliki head air sebesar 30 cm. Tentukan debit yang diairkan jika Cd = 0,6 b = 4,5 m H = 0,3 m Q = 2/3 x 0,6 x 4,5 x (2x9,81)1/2 x 0,33/2 = 1,31 m3/det

Sebuah weir dengan panjang 8 m akan dibangun melintang saluran segi empat dengan aliran 9 m3/det. Jika kedalaman maksimum dari air di hulu aliran adalah 2 m, berapakah ketinggian weir. Abaikan kontraksi dan gunakan Cd = 0,62

Q = 2/3 Cd x b x (2g)1/2 x H3/2 9 = 2/3 x 0,62 x 8 x (2x9,81) 1/2 x H3/2 H = 0,723 Ketinggian weir adalah 2-0,723 = 1,277 m.

Data curah hujan harian suatu DAS adalah 0,2 juta kubik meter per hari Data curah hujan harian suatu DAS adalah 0,2 juta kubik meter per hari. Jika 80% dari air hujan mencapai reservoir penampung dan melalui weir segiempat. Berapakah panjang weir bila air diharapkan tidak melimpah lebih dari 1m di atas bendung?. Asumsikan koefisien discharge yang memadai.

Curah hujan = 0,2 x 106 m3/hari Limpahan ke reservoir = 80% x 0,2 x 106 = 0,16 x 106 m3/hari = 0,16 x 106 /86400 = 1,85 m3/det H= 1 m, Cd = 0,6, Q = 2/3 Cd x b x (2g)1/2 x H3/2 1,85 = 2/3 x 0,6 x b x (2x9,81)1/2 x 13/2 = 1,77 b b = 1,045 m

+ 8,05m + 1,15 m, Cd = 0,61 C A B Cc = 0,0625 So=0,003 L=513 E D So=0,01 L=~ So=0,003 L=~ m 1:1 m, n=0,015 ABCD 70 m, DE 1 :1

Ingat: Trapesium, Ketinggian dan Slope kritik Saluran trapesium dengan lebar dasar 15 m dan kemiringan tebing 1:1 mengalirkan debit 100 m3/det. Apabila koefisien Manning n=0,02 Kedalaman kritis dan kemiringan kritis dari aliran tersebut: Yc = 1,59 m dan Sc = 0,0038

Saluran CD Kedalaman kritis