TEKNIK PENGINTEGRALAN

Slides:



Advertisements
Presentasi serupa
PERSAMAAN DAN PERTIDAKSAMAAN
Advertisements

INTEGRAL TAK TENTU ANTI TURUNAN DAN INTEGRAL TAK TENTU
Teknik Pengintegralan
Aryo Pinandito, ST, M.MT - PTIIK UB
DIFERENSIAL FUNGSI SEDERHANA (ORDINARY DIFFERENTIAL)
HITUNG INTEGRAL Hitung integral Bahan Ajar 3 SK dan KD Indikator
Selamat Datang & Selamat Memahami
MODUL VII METODE INTEGRASI
Soal No 17 halaman 66 Find a) the coordinates of the foci and vertices for hyperbola whose equations given, b) equation of the asymptotes. Sketch the curve.
BAB VII INTEGRAL TAK TENTU.
KALKULUS 2 TEKNIK INTEGRASI.
Deret Taylor.
Modul-8 : Algoritma dan Struktur Data
INDEFINITE INTEGRAL DEFINITE INTEGRAL
. Integral Parsial   Jika u dan v merupakan fungsi dapat diturunkan terhadap x maka .d(uv) = u dv +v du .u dv = d(uv) – v du Integral dengan bentuk ini.
Diferensial Fungsi Majemuk
Korelasi Linier KUSWANTO Korelasi Keeratan hubungan antara 2 variabel yang saling bebas Walaupun dilambangkan dengan X dan Y namun keduanya diasumsikan.
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
Teorema Green.
Diferensial Fungsi Majemuk
BAGIAN III Lapisan Data Link.
BLACK BOX TESTING.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Menulis Kolom  Kolom adalah opini atau artikel. Tidak seperti editorial, kolom memiliki byline.  Kolom Biasanya ditulis reguler. Biasanya mingguan atau.
1 Pertemuan 09 Kebutuhan Sistem Matakuliah: T0234 / Sistem Informasi Geografis Tahun: 2005 Versi: 01/revisi 1.
PEMBAHASAN SOAL GEOMETRI ANALITIK R OTASI S UMBU 1. Letty Andrias M Eva Putri Karunia Kinanthi Mustika Ayu Iffatun.
Pengintegralan Parsial
 1. Explaining the definition of linear equation with one variable.  2. Explaining the characteristics of linear equation with one variable. 3. Determining.
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
1 Pertemuan 15 Modelling Page Replacement Algorithm Matakuliah: T0316/sistem Operasi Tahun: 2005 Versi/Revisi: 5.
1 HAMPIRAN NUMERIK SOLUSI PERSAMAAN LANJAR Pertemuan 5 Matakuliah: K0342 / Metode Numerik I Tahun: 2006 TIK:Mahasiswa dapat meghitung nilai hampiran numerik.
1 Pertemuan 11 Function dari System Matakuliah: M0446/Analisa dan Perancangan Sistem Informasi Tahun: 2005 Versi: 0/0.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Binary Search Tree. Sebuah node di Binary Search Tree memiliki path yang unik dari root menurut aturan ordering – Sebuah Node, mempunyai subtree kiri.
OPERATOR DAN FUNGSI MATEMATIK. Operator  Assignment operator Assignment operator (operator pengerjaan) menggunakan simbol titik dua diikuti oleh tanda.
STATISTIKA CHATPER 4 (Perhitungan Dispersi (Sebaran))
Linear algebra Yulvi zaika.
KOMUNIKASI DATA Materi Pertemuan 3.
Induksi Matematika.
07/11/2017 BARISAN DAN DERET KONSEP BARISAN DAN DERET 1.
Recurrence relations.
LIMIT FUNGSI LIMIT FUNGSI ALJABAR.
Kode Hamming.
Pengujian Hipotesis (I) Pertemuan 11
Dasar-Dasar Pemrograman
Presentasi Statistika Dasar
Parabola Parabola.
Citra Noviyasari, S.Si, MT
VECTOR VECTOR IN PLANE.
BILANGAN REAL BILANGAN BERPANGKAT.
Teknik Pengintegralan
REAL NUMBERS EKSPONENT NUMBERS.
Pertemuan 13 INTEGRAL.
FACTORING ALGEBRAIC EXPRESSIONS
Fractions Fractions and Their Forms Operating Fractions
Rekursif- studi kasus.
Matematika Pertemuan 16 Matakuliah : D0024/Matematika Industri II
Master data Management
Motivasi Apa anda juga ingin seperti orang ini Berusaha mendapatkan
Matematika PERSAMAAN KUADRAT Quadratic Equations Quadratic Equations
AIR STRIPPING The removal of volatile contaminants from water and contaminated soils.
Operasi Matriks Dani Suandi, M.Si..
Group 3 About causal Conjunction Member : 1. Ahmad Fandia R. S.(01) 2. Hesti Rahayu(13) 3. Intan Nuraini(16) 4. Putri Nur J. (27) Class: XI Science 5.
Algoritma & Pemrograman 1 Achmad Fitro The Power of PowerPoint – thepopp.com Chapter 3.
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
Diferensial Fungsi Majemuk
"More Than Words" Saying I love you, Is not the words, I want to hear from you, It's not that I want you, Not to say but if you only knew, How easy, it.
2. Discussion TASK 1. WORK IN PAIRS Ask your partner. Then, in turn your friend asks you A. what kinds of product are there? B. why do people want to.
Wednesday/ September,  There are lots of problems with trade ◦ There may be some ways that some governments can make things better by intervening.
Transcript presentasi:

TEKNIK PENGINTEGRALAN ALFITH, S.Pd, M.Pd

Integral dengan Substitusi Ingat Aturan Rantai pada Turunan : Jika kedua ruas diintegralkan, maka diperoleh dari definisi integral tak tentu

Selanjutnya….. Misal u = g(x), maka du = g’(x)dx Disubstitusi ke atas diperoleh

Langkah – langkah integral dg substitusi Mulai dengan fungsi yang diintegralkan Kita misalkan u = g(x) Hitung du Substitusi u dan du Integralkan Ganti u dengan g(x)

Example 1 Hitunglah Jawab Misalkan u = 3x + 5 , maka du = 3 dx , dx = 1/3 du Substitusi ke fungsi di atas diperoleh

Example 2 Hitunglah Jawab Misalkan u = -3x2 + 5 , maka du = -6x dx atau x dx = -1/6 du

Example 3 Hitunglah Jawab Misalkan u = cos x , maka du = -sin x dx atau sin x dx = -du. Sehingga

Exercise

Integration by Parts Bentuk integral dapat diselesaikan dengan metode Integral By Parts (Integral sebagian – sebagian) , yaitu Atau lebih dikenal dengan rumus

Example 4 Hitunglah Jawab Misalkan u = 3 – 5x , du = -5 dx. dv = cos 4x , v = ¼ sin 4x dx Maka

Example 5 Hitunglah a b c Exercise

Reduction Formulas Link to James Stewart

Partial Fractions The method of Partial Fractions provides a way to integrate all rational functions. Recall that a rational function is a function of the form where P and Q are polynomials. The technique requires that the degree of the numerator (pembilang) be less than the degree of the denominator (penyebut) If this is not the case then we first must divide the numerator into the denominator.

2. We factor the denominator Q into powers of distinct linear terms and powers of distinct quadratic polynomials which do not have real roots. 3. If r is a real root of order k of Q, then the partial fraction expansion of P/Q contains a term of the form where A1, A2, ..., Ak are unknown constants.

4. If Q has a quadratic factor ax2 + bx + c which corresponds to a complex root of order k, then the partial fraction expansion of P/Q contains a term of the form where B1, B2, ..., Bk and C1, C2, ..., Ck are unknown constants. 5. After determining the partial fraction expansion of P/Q, we set P/Q equal to the sum of the terms of the partial fraction expansion. (See Ex-2.Int.Frac)

6. We then multiply both sides by Q to get some expression which is equal to P. 7. Now, we use the property that two polynomials are equal if and only if the corresponding coefficients are equal. (see ex3-int.Fractional) 8. We express the integral of P/Q as the sum of the integrals of the terms of the partial fraction expansion. (see Ex4-Int.Fractional)

9. Integrate linear factors: for n > 1

10. Integrate quadratic factors: Some simple formulas:

Example 6 Hitunglah Jawab Link Ex1-Int.Fractional

Exercise Link to Drii – Int.Fractional

Strategi Pengintegralan Link to Strategi Pengintegralan

Example 7 Evaluate Answer

Example 8 Evaluate Answer

Example 9 Evaluate Answer

Example 10 Evaluate Answer

Example 11 Evaluate Answer

Example 12 Evaluate Answer

Example 12 Evaluate Answer

Example 13 Evaluate Answer

Example 14 Evaluate Answer

Tabel Rumus Umum Pengintegralan Link to Tabel Rumus Umum integral