KELOMPOK 7 PEMBAHASAN DAN
Pertanyaan Kelompok 1 Hlm An architect is calculating the dimensions for a regular hexagon shaped window. If the height of the opening is 120 cm, find the width AB. (m ∠ ADF = 120) C
Pertanyaan Kelompok 2 Hlm Given : Isosceles triangle ABC with vertex angle B AE is altitude from A to BC CD is altitude from C to AB AD ≅ CE Prove : ∠ BAE ≅ ∠ BCD
PernyataanAlasan 1.CD ┴ AB 1. CD is altitude from A to AB 2. AE ┴ BC 2. AE is altitude from A to BC 3. ∠ CDB ≅ ∠ AEB 3. Karena tegak lurus jadi besar sudut sama yaitu ∠ B ≅ ∠ B4. Sudut tersebut kongruen dengan sudut itu sendiri 5. AB AD = CB CE5. Terletak pada satu garis 6. DB = EB 6. Karena AD ≅ CE maka DB = EB 7. ΔBAE ≅ ΔBCD7. ASA Penyelesaian : Kita akan menggunakan informasi yang telah diberikan untuk menunjukan bahwa ∠ BAE ≅ ∠ BCD dan kemudian menggunakan postulat ASA.
PERTANYAAN DARI KELOMPOK 3 Halaman 235 nomor 14 A window has a clear opening 41 inches wide and 26 inches high. Will a ping-pong table top 48 inches wide fit through the window?
Answer : The ping-pong table can through the window, because the hypotenause of the window is more than 48 inches. 41 inches 26 inches B A CD
PERTANYAAN DARI KELOMPOK 4 Halaman 235 nomor 19 If an equilateral triangle has side length s, find the radius of the circle that contains the three vertices X YZ O
Answer : X YZ O T So, the radius of the circle that contains the three vertices is
Halaman 207 nomor 34 Prove that the line segments joining the midpoint of the base of an isosceles triangle to the midpoints of the legs are congruent Given: point o is the midpoint of Proof:
NoStatementsReasons 1Definition midpoint of a segment 2 3If a triangle is isosceles then it’s base are congruen (theorem 1) 4SAS postulat 5CPCTC
Halaman 207 nomor 36 Prove that an equiangular triangle is equilateral Proof Given :let ΔABC have measure of each angles is 60 Prove : Plan :Let D be the midpoint of.Draw and prove that
NoStatementsReasons 1Given 2D is the midpoint ofEvery line segment has one and only one midpoint 3A segment from the vertex angle to the midpoint of the opposite side forms a pair of congruent triangle (theorem 4-2) 4CPCTC is equilateral with
TEOREMA PHYTAGORAS Pembuktian lain menggunakan diagram Pythagoras Bukti berikut ini lebih sederhana tetapi menggunakan sedikit manipulasi aljabar. Keempat segitiga siku-siku yang kongruen disusun membentuk gambar di bawah ini. Dengan menghitung luas bangun bujur sangkar yang terjadi melalui dua cara akan diperoleh: = c ½ ab a ab + b 2 = c ab a 2 + b 2 = c 2 ( a+b) 2
Answer : The ping-pong table can through the window, because the hypotenause of the window is more than 48 inches. 41 inches 26 inches B A CD
PERTANYAAN DARI KELOMPOK 4 Halaman 235 nomor 19 If an equilateral triangle has side length s, find the radius of the circle that contains the three vertices X YZ O
Answer : X YZ O T So, the radius of the circle that contains the three vertices is
Halaman 207 nomor 34 Prove that the line segments joining the midpoint of the base of an isosceles triangle to the midpoints of the legs are congruent Given: point o is the midpoint of Proof:
NoStatementsReasons 1Definition midpoint of a segment 2 3If a triangle is isosceles then it’s base are congruen (theorem 1) 4SAS postulat 5CPCTC
Halaman 207 nomor 36 Prove that an equiangular triangle is equilateral Proof Given :let ΔABC have measure of each angles is 60 Prove : Plan :Let D be the midpoint of.Draw and prove that
NoStatementsReasons 1Given 2D is the midpoint ofEvery line segment has one and only one midpoint 3A segment from the vertex angle to the midpoint of the opposite side forms a pair of congruent triangle (theorem 4-2) 4CPCTC is equilateral with