Masalah Transportasi II (Transportation Problem II)

Slides:



Advertisements
Presentasi serupa
Perth Chart & Critical Path Method
Advertisements

TEKNIK PENCARIAN (SEARCHING)
Manajemen Industri.
MODEL TRANSPORTASI & MODEL PENUGASAN
Pertemuan 6– Transportasi
LABOR MARKET Kuliah 12. THE LABOR MARKET..1  When firms respond to an increase in demand by stepping up production : Higher production requires an increase.
PERTEMUAN PERSOALAN TRANSPORTASI OLEH Ir. Indrawani Sinoem, MS.
Game Theory Purdianta, ST., MT..
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
1 DATA STRUCTURE “ STACK” SHINTA P STMIK MDP APRIL 2011.
BLACK BOX TESTING.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
PERSOALAN TRANSPORTASI TAK SEIMBANG
TRANSPORTATION PROBLEM
1. Properties of Electric Charges 2. Coulomb’s law 3. The Electric Fields 4. Electrics Field of a Continuous Charge Distribution 5. Electric Field Lines.
1 Pertemuan 09 Kebutuhan Sistem Matakuliah: T0234 / Sistem Informasi Geografis Tahun: 2005 Versi: 01/revisi 1.
1 Pertemuan 12 Pengkodean & Implementasi Matakuliah: T0234 / Sistem Informasi Geografis Tahun: 2005 Versi: 01/revisi 1.
MODEL TRANSPORTASI Metode Stepping Stone Kelompok 10 Friska Nahuway
1 Pertemuan 22 Analisis Studi Kasus 2 Matakuliah: H0204/ Rekayasa Sistem Komputer Tahun: 2005 Versi: v0 / Revisi 1.
BAB 6 KOMBINATORIAL DAN PELUANG DISKRIT. KOMBINATORIAL (COMBINATORIC) : ADALAH CABANG MATEMATIKA YANG MEMPELAJARI PENGATURAN OBJEK- OBJEK. ADALAH CABANG.
PERTEMUAN KE-6 UNIFIED MODELLING LANGUAGE (UML) (Part 2)
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
Bina Nusantara Mata Kuliah: K0194-Pemodelan Matematika Terapan Tahun : 2008 Aplikasi Model Markov Pertemuan 22:
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
1 Pertemuan 8 JARINGAN COMPETITIVE Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
1 Pertemuan 15 Game Playing Matakuliah: T0264/Intelijensia Semu Tahun: Juli 2006 Versi: 2/1.
1 HAMPIRAN NUMERIK SOLUSI PERSAMAAN LANJAR Pertemuan 5 Matakuliah: K0342 / Metode Numerik I Tahun: 2006 TIK:Mahasiswa dapat meghitung nilai hampiran numerik.
1 Pertemuan 13 Algoritma Pergantian Page Matakuliah: T0316/sistem Operasi Tahun: 2005 Versi/Revisi: 5.
Pasar Faktor Produksi.
1 Pertemuan 12 WIDROW HOFF LEARNING Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
13 Akuntansi Biaya Activity Based Costing
Keuangan dan Akuntansi Proyek Modul 2: BASIC TOOLS CHRISTIONO UTOMO, Ph.D. Bidang Manajemen Proyek ITS 2011.
Pertemuan 6 dan 7 MODEL TRANSPORTASI & MODEL PENUGASAN.
MODEL TRANSPORTASI.
ALGORITMA SIMPLEX Adalah prosedure aljabar untuk mencari solusi optimal sebuah model linear programming, LP.
VERIFIKASI ALAT UKUR SMK Negeri 13 Bandung.
KOMUNIKASI DATA Materi Pertemuan 3.
Induksi Matematika.
Arta Rusidarma Putra, ST., MM
POKOK BAHASAN Definisi Pasar Makna kegagalan pasar
DAFTAR TOPIK SKRIPSI Cecilia E. Nugraheni
MODEL TRANSPORTASI.
Cartesian coordinates in two dimensions
Cartesian coordinates in two dimensions
MODEL TRANSPORTASI Modul 10. PENELITIAN OPERASIONAL Oleh : Eliyani
Transportation Model.
MODEL TRANSPORTASI Pertemuan 09
MODEL TRANSPORTASI.
Metode Transportasi 1.
Dasar-Dasar Pemrograman
Kuliah Riset Operasional
MODEL TRANSPORTASI MATERI 10.
RISET OPERASIONAL 1 RISET OPERASI
Analytical Hierarchy Process ( AHP )
Operational Research 1 (IE G2M3)
METODE TRANSPORTASI (DISTRIBUSI)
KE TEMPAT TUJUAN SECARA OPTIMAL
Kuliah Riset Operasional
METODE TRANSPORTASI (DISTRIBUSI)
CONTOH SOAL LAND USE.
Pertemuan 13 Metode Transportasi
Cost-Volume-Profit Analysis
6. APLIKASI PRINSIP EKONOMI DALAM BISNIS; PRODUKSI
Master data Management
ELASTIC PROPERTIS OF MATERIAL
Simultaneous Linear Equations
Aplikasi Graph Minimum Spaning Tree Shortest Path.
HOTEL MANAGEMENT OF UNIVERSITAS DIAN NUSWANTORO
BAB 9 TEORI PRODUKSI. 2 Introduction Our focus is the supply side. The theory of the firm will address: How a firm makes cost-minimizing production decisions.
Wednesday/ September,  There are lots of problems with trade ◦ There may be some ways that some governments can make things better by intervening.
Transcript presentasi:

Masalah Transportasi II (Transportation Problem II) Minggu 6 Part 2

Outline Stepping stone solution method Alternative solution Degeneracy Un-balanced transportation problem Transportation problem with prohibited routes (rute yg dilarang)

The Stepping-Stone Solution Method Bila solusi basis layak awal telah diperoleh (NWC, least cost, VAM), maka optimalisasi solusi dapat dilakukan dengan 2 metode: stepping stone dan MODI. Dengan stepping stone, solusi optimal didapat melalui: Tentukan jalur stepping-stone dan perubahan biaya untuk setiap sel kosong pada tabel. Alokasikan sebanyak mungkin ke sel kosong yang mempunyai penurunan biaya paling besar. Ulangi langkah 1 dan 2 sampai semua sel kosong mempunyai perubahan biaya (positif) yang mengindikasikan solusi optimal.

Transportation problem

Initial Solution with NWC z=5.925

Initial Solution with Least Cost z=4.550

Initial Solution with VAM z=5.125

The Stepping-Stone Solution Method The initial solution used as a starting point in this problem is the least cost method solution, because it had the minimum total cost of the three methods used. z=4.550

The Stepping-Stone Solution Method The stepping-stone method determines if there is a cell with no allocation that would reduce cost if used.

The Stepping-Stone Solution Method Substract one unit from another allocation along that row.

The Stepping-Stone Solution Method A requirement of this solution method is that units can only be added to and subtracted from cells that already have allocations, thus one ton must be added to a cell as shown. The Stepping-Stone Path for Cell 1A 1A-1B+3B-3A = +6$-8$+5$-4$ = -1$

The Stepping-Stone Solution Method - An empty cell that will reduce cost is a potential entering variable. - To evaluate the cost reduction potential of an empty cell, a closed path connecting used cells to the empty cells is identified. The Stepping-Stone Path for Cell 2A

The Stepping-Stone Solution Method The remaining stepping-stone paths and resulting computations for cells 2B and 3C. - + - + The Stepping-Stone Path for Cell 2B The Stepping-Stone Path for Cell 3C

The Stepping-Stone Solution Method After all empty cells are evaluated, the one with the greatest cost reduction potential is the entering variable. The Stepping-Stone Path for Cell 1A

The Stepping-Stone Solution Method - When reallocating units to the entering variable (cell), the amount is the minimum amount subtracted on the stepping-stone path. - At each iteration one variable enters and one leaves (just as in the simplex method). The Second Iteration of the Stepping-Stone Method

The Stepping-Stone Solution Method Check to see if the solution is optimal. The Stepping-Stone Path for Cell 2A The Stepping-Stone Path for Cell 1B

The Stepping-Stone Solution Method Continuing check for optimality. The Stepping-Stone Path for Cell 2B The Stepping-Stone Path for Cell 3C

The Stepping-Stone Solution Method The stepping-stone process is repeated until none of the empty cells will reduce costs (i.e., an optimal solution). In example, evaluation of four paths indicates no cost reductions, therefore last table solution is optimal. Solution and total minimum cost : x1A = 25 tons, x2C = 175 tons, x3A = 175 tons, x1C = 125 tons, x3B = 100 tons Z = $6(25) + 8(0) + 10(125) + 7(0) + 11(0) + 11(175) + 4(175) + 5(100) + 12(0) = $4,525

Alternative Solution A multiple optimal solution occurs when an empty cell has a cost change of zero and all other empty cells are positive. An alternate optimal solution is determined by allocating to the empty cell with a zero cost change. Alternate optimal total minimum cost also equals $4,525. The Alternative Optimal Solution

Degeneracy (1 of 3) In a transportation tableau with m rows and n columns, there must be m + n - 1 cells with allocations; if not, it is degenerate. The tableau in the figure does not meet the condition since 3 + 3 -1 = 5 cells and there are only 4 cells with allocations. The least cost initial solution

Degeneracy (2 of 3) In a degenerate tableau, all the stepping-stone paths or MODI equations cannot be developed. To rectify a degenerate tableau, an empty cell must artificially be treated as an occupied cell. The Initial Solution

Degeneracy (3 of 3) The stepping-stone paths and cost changes for this tableau: 2A-2C-1C-1A X2a: 7 - 11 + 10 - 6 = 0 2B-2C-1C-1B X2b: 11 - 11 + 10 - 8 = + 2 3B-1B-1A-3A X3b: 5 - 8 + 6 - 4 = - 1 3C-1C-1A-3A X3c: 12 - 10 + 6 - 4 = + 4 The Second Stepping-Stone Iteration

Un-balanced Transportation Problem

Un-balanced Transportation Problem

Un-balanced Transportation Problem

Un-balanced Transportation Problem

Un-balanced Transportation Problem

Un-balanced Transportation Problem

Un-balanced Transportation Problem

Un-balanced Transportation Problem

Prohibited Routes A prohibited route is assigned a large cost such as M. When the prohibited cell is evaluated, it will always contain the cost M, which will keep it from being selected as an entering variable.

Review Sebuah Perusahaan mengangkut produk dari tiga pabrik (Factory) ke tiga gudang (Warehouse). Kapasitas supply ke tiga pabrik, permintaan pada ke tiga gudang dan biaya transport per unit adalah sebagai berikut Cari solusi awal dengan NWC, least cost, VAM. Cek degenerasi Dapatkan solusi optimal dengan stepping stone Pabrik Pasar Penawaran W1 W2 W3 F1 F2 F3 6 4 1 8 9 2 3 14 12 5 Permintaan 10 15 31

Review Pabrik Pasar Penawaran W1 W2 F1 F2 40 70 65 30 350 400 Dapatkan solusi optimal untuk permasalahan berikut Pabrik Pasar Penawaran W1 W2 F1 F2 40 70 65 30 350 400 Permintaan 300 750