Test Hypotesis II Materi ke
Test Hypotesis 2 Mean Jika digunakan sampel besar ( n1 ≥ 30 dan ( n2 ≥ 30) Hypotesa nol µ1 = µ0 (µ0 suatu harga tertentu) Langkah – langkah Test Hypotesisnya sbb :
Langkah – langkah Test Hypotesis 2 mean 1) Hypotesa Nol, H0 = µ = µ0, maka hypotesa alternatifnya dapat disusun dengan cara : i) Ha : µ µ0 atau ii) Ha : µ > µ0 atau iii) Ha : µ < µ0 2) Menetukan tingkat signifikansnya
Langkah – langkah Test Hypotesis 2 mean 3) Menentukan daerah kritis Jika alternatifnya : i) Ha : µ µ0, daerah kritisnya Z > Z/2 dan Z < - Z/2 ii) Ha : µ > µ0, daerah kritisnya Z > Z/2 iii) Ha : µ < µ0 daerah kritisnya Z < - Z/2 4) Perhitungan Harga nilai Z dihitung dengan rumus : 5) Kesimpulan
Langkah – langkah Test Hypotesis 2 mean (2) Jika digunakan sampel kecil (n1 < 30 dan n2 < 30) anggapan kedua populasinya didistribuskan menurut distribusi normal. Jika 1 dan 2 diketahui, langka-langkahnya seperti di atas. Tetapi jika 1 dan 2 tidak diketahui diperlukan anggapan bahwa 1 = 2 . Langkah-langkah uji Hypotesisnya sbb :
Langkah-langkah uji Hypotesisnya 2 mean sbb : 1) Hypotesa Nol, H0 = µ = µ0, maka hypotesa alternatifnya dapat disusun dengan cara : i) Ha : µ µ0 atau ii) Ha : µ > µ0 atau iii) Ha : µ < µ0 2) Menetukan tingkat signifikansnya
Langkah-langkah uji Hypotesisnya sbb : 3) Menentukan daerah kritis Jika alternatifnya : i) Ha : µ µ0, daerah kritisnya Z > Z/2 dan Z < - Z/2 ii) Ha : µ > µ0, daerah kritisnya Z > Z/2 iii) Ha : µ < µ0 daerah kritisnya Z < - Z/2 4) Perhitungan Harga nilai Z dihitung dengan rumus : 5) Kesimpulan
Contoh Soal : Dua jenis komputer dicoba untuk memproses pengolahan data di suau perusahaan. Percobaan ini dimaksudkan untuk menguji apakah ada perbedaan kecepatan memproses hasil data yang diolah kedua komputer tersebut. Penguji memasukkan 5 buah data ke komputer pertama dan 5 data ke komputer ke dua untuk memperoleh output yang diinginkan. Rataan hasil pengolahan lebih 50%. Hasil percobaan menunjukkan jumlah data yang diinputkan sebagai berikut :
Contoh Soal : Komputer I : 55,61,62,54,57 Komputer II : 62,54,55,58,57 Jika digunakan tingkat signifikan = 0,01. kesimpulan apa yang dapat diambil ? Jawab : Pada test hypotesa ini sampel-sampel yang diambil kecil, dan tidak diketahui, sehingga harus dicari S.
Contoh Soal : Data Komp. I |Xi – X|2 Data Komp. II 55 25 62 61 36 54 49 58 121 81 57 100 144 59 124 = 262 299
Contoh Soal : Maka uji hypotesisnya adalah : Hypotesa alternatif : Ha : µ1= 0,5 Ha : µ1 > 0,5 (2) Nilai signifikansi : = 0,01 mengacu pada tabel students karena n kecil t(0,01;5+5-2) =2,896
Contoh Soal : (3) Daerah Kritis Ha : µ1 > µ0 daerah kritisnya t hitung > t/2 yaitu : t hitung > 2,896 (4) Menghitung t hitung ;
Contoh Soal : (5) Kesimpulan jika dilihat daerah kritis t hitung > 2,896 -55,8 > 2,896, maka H0 ditolak. Artinya tidak benar bahwa hasil pengujian menghasilkan rataan lebih dari 50 %.
Test Hypotesis 2 Proporsi Hypotesa nol H0 : P1 = P2 Langkah-langkahnya : Hypotesa Alternatifnya : a) Ha : P P0 atau b) Ha : P > P0 atau c) Ha : P < P0 2) Menentukan Nilai Signifikan, dengan cara mengacu pada tabel normal ( Z/2)
Test Hypotesis 2 Proporsi 2) Daerah Kritisnya : Jika Alternatifnya : a) Ha : P P0 daerah kritisnya Z > Z/2 dan Z < - Z/2 b) Ha : P > P0 daerah kritisnya Z > Z/2 c) Ha : P < P0 daerah kritisnya Z < - Z/2
Test Hypotesis 2 Proporsi 3) Perhitungan nilai Z Caranya : 4) Kesimpulan : menerima dan menolak H0
Contoh Soal : (1) Sebuah perusahaan batu bata membuat batu bata melalui proses yang berbeda. Satu contoh acak berukuran 200 dipilih dari batu bata yang dibuat melalui proses pertama, ternyata ada 20 yang pecah. Contoh acak berukuran 300 dipilih dari batu bata yang dibuat melalui proses kedua, ternyata ada 45 yang pecah. Apakah proporsi batu bata pecah yang dibuat melalui dua proses tersebut sama ? Uji dengan taraf nyata a = 0,01
c) Daerah kritisnya : Z > Z/2 dan Z < - Z/2 Contoh Soal : Jawab : Hypotesa alternatif : Ha : P = P1 = P2 Ha : P P1 = P2 b) Nilai signifikan = 0,01 Z/2 =2,327 c) Daerah kritisnya : Z > Z/2 dan Z < - Z/2 Z hitung > 2,327 dan Z < - 2,327
Contoh Soal : Menghitung nilai Z : diketahui P1 =20/200 = 0,1
Contoh Soal : 5) Kesimpulan Zhitung = -1,63 jauh berada di luar daerah kritis, sehingga H0 diterima. Artinya : proporsi batu bata pecah yang dibuat melalui dua proses tidak berbeda nyata dengan taraf keyakinan 0,01.