Probabilitas dan Statistika BAB 2 Peubah acak dan distribusi peluang

Slides:



Advertisements
Presentasi serupa
DISTRIBUSI DISKRIT DAN KONTINYU
Advertisements

Distribusi Hipergeometrik
Peubah acak dan distribusi Peluang Diskret.
Bab 4. Variabel Acak dan Distribusi Probabilitas
DISTRIBUSI PROBABILITAS
DALIL-DALIL PROBABILITAS (SSTS 2305 / 3 sks)
DISTRIBUSI PROBABILITAS
DISTRIBUSI PELUANG.
DISTRIBUSI PROBABLITAS
PEUBAH ACAK DAN DISTRIBUSI PROBABILITAS
DISTRIBUSI PELUANG STATISTIKA.
DISTRIBUSI PROBABLITAS (SSTS 2305 / 3 sks)
Peubah Acak Kontinu Pertemuan Kesebelas Fungsi Kepekatan Peluang
Peubah Acak dan Distribusi Peluang Kontinu
VARIABEL ACAK DAN NILAI HARAPAN.
Distribusi Peluang Kuswanto, 2007.
PROBABILITY DISTRIBUTION FUNCTION (PDF) dan cumulatif distribution function (cdf) untuk kasus DISKRIT RIPAI, S.Pd., M.Si.
VARIABEL ACAK DAN NILAI HARAPAN
Bab 1 Distribusi Frekuensi.
VARIABEL ACAK DAN NILAI HARAPAN
1 Pertemuan 04 Peubah Acak Diskrit dan Sebaran Peluang Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
Pengolahan data dan Penyajiannya
DISTRIBUSI PROBABILITAS / PELUANG
DISTRIBUSI PROBABILITAS diskrit
1. Seorang pedagang menjual barangnya sebesar Rp ,00
DISTRIBUSI PROBABILITAS DAN DISTRIBUSI SAMPLING
VARIABEL ACAK DAN NILAI HARAPAN
DISTRIBUSI PROBABILITAS
KONSEP DASAR PROBABILITAS
DISTRIBUSI PROBABILITAS
PROBABILITY DISTRIBUTION FUNCTION (PDF) dan cumulatif distribution function (cdf) untuk kasus DISKRIT RIPAI, S.Pd., M.Si.
PROBABILITAS.
DISTRIBUSI FREKUENSI.
DISTRIBUSI SELISIH PROPORSI
Peubah Acak Oleh : Asep Ridwan Jurusan Teknik Industri FT UNTIRTA.
VARIABEL ACAK DAN NILAI HARAPAN
Harapan matematik (ekspektasi)
Distribusi Probabilitas
Oleh : FITRI UTAMININGRUM, ST, MT)
Variansi, Kovariansi, dan Korelasi
PROBABILITAS DAN STATISTIK
Transformasi Peubah Acak dan Bebas Statistik
Pertemuan 09 Peubah Acak Diskrit
Pertemuan 04 Peubah Acak Diskrit dan Sebaran Peluang
Peubah Acak.
DISTRIBUSI FREKUENSI.
Distribusi Peluang Diskrit
DISTRIBUSI NORMAL DAN CARA PENGGUNAANNYA
PEUBAH ACAK & DISTRIBUSI PELUANG. PENGERTIAN PEUBAH ACAK STATISTIKA  Penarikan kesimpulan tentang (karakteristik dan sifat) populasi. Contoh : Pemeriksaan.
DISTRIBUSI FREKUENSI.
PELUANG.
DISTRIBUSI PROBABILITAS
Analisa Data Statistik
PEUBAH ACAK DAN DISTRIBUSI PELUANG
Variabel Acak Diskrit & Distribusi Peluang
T. Yudi Hadiwandra, M.Kom WA: PROBABILITAS DAN STATISTIK Code : h87p4t
T. Yudi Hadiwandra, M.Kom WA: PROBABILITAS DAN STATISTIK Code : h87p4t
HARAPAN MATEMATIKA Tri Rahajoeningroem, MT Jurusan Teknik Elektro
Transformasi Peubah Acak dan Bebas Statistik
PELUANG BERSYARAT DISKRIT
PELUANG BERSYARAT DISKRIT
Oleh : FITRI UTAMININGRUM, ST, MT)
DISTRIBUSI PELUANG STATISTIKA.
Peubah Acak (Random Variable) IV (kasus Peubah Kontinyu)
PERTEMUAN Ke- 2 STATISTIKA EKONOMI II
PENGERTIAN DISTRIBUSI TEORITIS
DISTRIBUSI PROBABILITAS
1. TEORI PENDUKUNG 1.1 Pendahuluan 1.2 Variabel acak
KONSEP DASAR PROBABILITAS
Transcript presentasi:

Probabilitas dan Statistika BAB 2 Peubah acak dan distribusi peluang

Pembahasan Peubah Acak Distribusi Peluang Diskret Distribusi Peluang Kontinyu Distribusi Empiris Distribusi Peluang Gabungan Bebas Statistik

Peubah acak Peubah acak ialah suatu fungsi yang mengaitkan suatu bilangan real pada setiap unsur dalam ruang sampel. Peubah acak akan dinyatakan dengan huruf besar, misalnya X , sedangkan nilainya dinyatakan dengan huruf kecil padanannya, misalnya x.

gambaran Peubah acak, X, banyaknya barang yang cacat bila tiga suku cadang elektronik diuji. Jadi, peubah acak X mendapat nilai 2 untuk semua unsur pada himpunan bagian E = {CCB, CBC, BCC} Jadi, tiap kemungkinan nilai x menggambarkan suatu kejadian yang merupakan ruang bagian dari ruang sampel percobaan tersebut.

Contoh soal 1 Dua buah bola diambil satu demi satu tanpa dikembalikan dari suatu kantung berisi 4 bola merah dan 3 bola hitam. Bila Y menyatakan jumlah bola merah yang diambil maka nilai y yang mungkin dari peubah acak Y adalah? ruang sampel y MM MH HM HH 2 1

Ruang sampel diskret & Ruang sampel kontinu Jika suatu ruang sampel mengandung titik yang berhingga banyaknya atau sederetan anggota yang banyaknya sebanyak bilangan bulat, maka ruang sampel itu disebut ruang sampel diskret Ruang sampel kontinu Bila ruang sampel mengandung titik sampel yang tak berhingga banyaknya dan banyaknya sebanyak titik pada sepotong garis, maka ruang sampel itu disebut ruang sampel kontinu

Distribusi peluang diskret Himpunan pasangan terurut (x, f(x)) merupakan suatu fungsi peluang, atau distribusi peluang peubah acak diskret X bila, untuk setiap kemungkinan hasil x 1. F(x) >= 0 2. = 1 3. P’(X = x) = f(x)

Contoh soal 2 Suatu pengiriman 8 komputer pc yang sama ke suatu toko mengandung 3 yang cacat. Bila suatu sekolah membeli 2 komputer ini secara acak, cari distribusi peluang banyaknya yang cacat

jawaban Misalkan X peubah acak dengan nilai x kemungkinan banyaknya komputer yang cacat yang dibeli oleh sekolah tersebut. Maka x dapat memperoleh setiap nilai 0, 1, dan 2. Sekarang, F(0) = P (X = 0) = = 10/28 F(1) = P(X = 1) = = 15/28 continue..

f(1) = P(X = 2) = = 2/28 Jadi distribusi peluang X x 0 1 2 f(x) 10/28 15/28 3/28

Distribusi kumulatif Distribusi kumulatif F(x) suatu peubah acak diskret X dengan distribusi peluang f(x) dinyatakan oleh F(x) = P(X x) = untuk - < x <

Contoh soal 3 Hitunglah distribusi kumulatif peubah acak X dalam contoh soal 2. Dengan menggunakan F(x), perlihatkan bahwa f(2) = 3/8 Jawab: Dengan menghitung langsung distribusi peluang pada contoh soal 2, diperoleh f(0) = 1/16, f(1) = 1/14, f(2) = 3/8, f(3) = ¼, dan f(4) = 1/16. Jadi, F(0) = f(0) = 1/16 F(1) = f(0) + f(1) = 5/16 F(2) = f(0) + f(1) + f(2) = 11/16 F(3) = f(0) + f(1) + f(2) + f(3) = 15/16 F(4) = f(0) + f(1) + f(2) + f(3) + f(4) = 1 Jadi, f(2) = F(2) – F(1) = 11/ 16 – 5/16 = 3/8

Distribusi peluang Kontinu Fungsi f(x) adalah fungsi padat peluang peubah acak kontinu Xt yang disefinisikan di atas himpunan semua bilangan real Rt bila 1. f(x) ≥ 0 untuk semua x R 2 = 1 3. P(a < X <b) =

Contoh soal 4 Misalkan bahwa galat suhu reaksi, dalam ºC, pada percobaan laboratorium yang dikontrol merupakan peubah acak X yang mempunyai fungsi padat peluang f(x) = x2/3, untuk –1 < x < 2 0, untuk x lainnya Tunjukkan bahwa syarat terpenuhi. Hitung P(0 < x 1). Jawab: = x2/3 dx = x3/9 = 8/9 + 1/9 = 1. P(0 < x 1) = x2/3 dx = x3/9 = 1/9

Distribusi kumulatif (tumpukan) Distribusi kumulatif (tumpukan) F(x) suatu peubah acak kontinu X dengan fungsi padat f(x) diberikan oleh F(x) = P(x x) = untuk - < x <

Contoh soal 5 Carilah F(x) dari fungsi pada contoh soal 4 dan kemudian hitunglah P(0 < X 1) Jawab: Untuk -1< x < 2, F(x) = = t2/3 dt = t3/9 = x3+1 9 Jadi, 0 x -1 F(x) = x3 + 1 -1 x < 2 1 x 2 P(0 < X 1) = F(1) – F(0) = 2/9 – 1/9

Distribusi empiris Data statistik, yang dikumpulkan dalam jumlah amat banyak, akan sangat membantu dalam menelaah bentuk distribusi bila disajikan dalam bentuk gabungan tabel dan grafik yang dinamakan diagram batang-daun. Contoh : 25 data Batang Daun Frekuensi 1 1251 4 2 2232447 7 3 5270319432 11 152 2,2 4,1 3,5 4,5 3,2 3,7 3,0 1,1 1,2 2,3 3,3 4,2 3,1 3,9 2,4 3,4 1,5 2,7 4,3 2,5

Distribusi empiris Distribusi frekuensi yang datanya dikelompokkan dalam kelas atau selang yang berbeda dapat dibuat dengan mudah dengan menghitung banyaknya daun pada setiap batang dan perhatikan bahwa setiap batang menentukan selang kelas. Contoh Selang Kelas Titik Tengah Kelas Frekuensi f Frekuensi nisbi 1.5 – 1.9 1.7 2 0.050 2.0 – 2.4 2.2 1 0.025 2.5 - 2.9 2.7 4 0.100 3.0 – 3.4 3.2 15 0.375 3.5 – 3.9 3.7 10 0.250 4.0 – 4.4 4.2 5 0.125 4.5 – 4.9 4.7 3 0.075

Distribusi empiris Histogram frekuensi nisbi dibentuk dengan menggunakan titik tengah tiap selang dan frekuensi nisbi padanannya. Suatu distribusi dikatakan simetris atau setangkup bila dapat dilipat sepanjang sumbu tegak tertentu sehingga kedua bagian saling menutupi. Distribusi yang tidak setangkup terhadap suatu sumbu tegak dikatakan taksetangkup atau mencong

Distribusi peluang gabungan Fungsi f(x, y) adalah distribusi peluang gabungan atau fungsi massa peluang peubah acak diskret X dan Y bila 1. F(x,y) 0 untuk semua (x,y). 2. F(x,y) = 1. 3. P(X = x, Y = y) = f(x,y). Untuk tiap daerah A di bidang xy, P[(X, Y) A] =

Contoh soal 6 Contoh soal 7: Dua isi ballpoint dipilih secara acak dari sebuah kotak yang berisi 3 isi warna biru, 2 merah, dan 3 hijau. Bila X menyatakan banyaknya yang berwarna biru dan Y warna merah yang terpilih, hitunglah Fungsi peluang gabungan f(x,y), dan P [(X,Y) A], bila A daerah { (x,y) [x+y 1} Jawab: Pasangan nilai (x,y) yang mungkin adalah (0,0), (0,1), (1,0), (1,1), (0, 2), dan (2,0). Sekarang f(0,1), misalnya menyatakan peluang bahwa isi berwarna merah dan hijau yang terpilih. Banyaknya cara yang berkemungkinan sama memilih dua isi dari delapan adalah = 28. Banyaknya cara memilih 1 merah dari 2 isi berwarna merah dan hijau dari 3 isi berwarna hijau adalah = 6, jadi f(0,1) = 6/28 = ¾. Dengan jalan yang sama dihitung peluang untuk kasus lainnya, yang disajikan pada tabel halaman berikut

x = 0, 1, 2; F(x,y) = y = 0, 1, 2; 0 x+y 2 b. P [(X, Y) A] = P (X + Y 1) = f(0,0) + f(0,1) + f(1,0) = 3/28 + 3/14 + 9/28 = 9/14 F(x,y) x Jumlah baris 0 1 2 y 1 2 3/28 9/28 3/28 3/14 3/14 1/28 15/28 3/7 jum. lajur 5/14 15/28 3/28

Fungsi padat gabungan Fungsi f(x,y) adalah fungsi padat gabungan peubah acak kontinu X dan Y bila 1. F(x,y) 0 untuk semua (x,y) 2. = 1 3. P [(X, Y) A] = Untuk tiap daerah A di bidang xy

Contoh soal 7 Contoh soal 8: Suatu perusahaan coklat mengirim berkotak-kotak coklat dengan campuran krem, tofe, da kacang berlapis coklat cerah dan pekat. Bila kotak dipilih secara acak , serta X dan Y menyatakan amsing – masing proporsi yang krem berlapis coklat cerah dan pekat dan misalkan bahwa fungsi padat gabungannya ialah: f(x, y) = 0 x 1, 0 y 1 untuk x, y lainnya Tunjukkan bahwa syarat = 1 dipenuhi Cari P [(X, Y) A], bila A daerah {(x,y)| 0 x ½, ¼ y ½}

Jawab : a. = = 2x2 + 6xy dy 5 5 = 2 + 6y dy = 2y + 3y2 5 5 5 5 = 2 + 3 = 1 5 5

b. P[(X, Y) A = P(0 < X < ½, ¼ < Y < ½) = 2x2 + 6xy dy 5 5 = 1 + 3y dy = y + 3y2 10 5 10 10 = 1 1 + 3 1 + 3 = 13 10 2 4 4 16 160

Distribusi marginal (pias) Distribusi marginal (pias) dari X sendiri dan Y sendiri didefinisikan sebagai g(x) = dan h(y) = Untuk hal diskret, dan g(x) = dan h(y) = untuk hal kontinu

Contoh soal 8 Tunjukkan bahwa jumlah lajur dan baris tabel berikut memberikan distribusi pias dari X sendiri dan Y sendiri F(x,y) x Jumlah baris 0 1 2 y 1 2 3/28 9/28 3/28 3/14 3/14 1/28 15/28 3/7 jum. lajur 5/14 15/28 3/28

Untuk peubah acak X, P(X = 0) = g(x) = = f(0,0) + f(0,1) + f(0,2) = 3/28 + 3/14 + 1/28 = 5/14 P(X = 1) = g(1) = = f(1,0) + f(1,1) + f(1,2) = 9/28 + 3/14 + 0 = 15/28 Dan P(X = 2) = g(2) = = f(2,0) + f(2,1) + f(2,2) = 3/28 + 0 + 0 = 3/28 Yang merupakan jumlah lajur pada tabel tersebut. Dengan jalan yang sama dapat ditunjukkan bahwa nilai h(y) merupakan jumlah barisnya.

Distribusi bersyarat Misalkan X dan Y dua peubah acak, diskret maupun kontinu. Distribusi bersyarat peubah acak Y, bila diketahui X = x, dinyatakan oleh f(y|x) = f(x,y), g(x) >0 g(x) Begitupula, distribusi bersyarat peubah acak X, bila diketahui Y = y, dinyatakan oleh f(x|y) = f(x,y), h(y) >0 h(y)

Bebas statistik Misalkan X dan Y dua peubah acak, diskret maupun kontinu, dengan fungsi peluang gabungan f(x,y) dan distribusi pias masing – masing g(x) dan h(y). Peubah X dan Y dinyatakan bebas statistik jika dan hanya jika f(x,y) = g(x) h(y) Untuk semua (x,y) dalam daerah definisinya Misalkan X1, X2, X3, …, Xn n peubah acak, diskret maupun kontinu, dengan distribusi peluang gabungan f(X1, X2, X3, …, Xn) dan distribusi pias masing – masing f1(x1), f2(x2), …, fn(xn). Peubah acak X1, X2, X3, …, Xn dikatakan saling bebas statistik jika dan hanya jika f(x1, x2, …, xn) = f1(x1) f2(x2), …, fn(xn). Untuk semua (x1, x2, …, xn) dalam daerah definisinya

Contoh soal 8 Misalkan lamanya tahan, dalam tahun, sejenis makanan kemasan dalam kotak sebelum rusak merupakan peubah acak yang fungsi padat peluangnya berbentuk f(x) = e-x , x >0 0, untuk x lainnya. Misalkan X1, X2, dan X3 menyatakan lamanya tahan tiga kotak dari makanan kemasan ini yang dipilih secara acak, hitunglah P (X1<2, 1<X2<3, X3>2). Jawab: Karena kotak dipilih secara acak (bebas), maka dapat dianggap bahwa peubah acak X1, X2, dan X3 bebas statistik dengan peluang padat gabungan f(x1, x2, x3) = f(x1)f(x2)f(x3) = e-x 1 e-x 2 e-x 3 = e-x 1-x2-x3 , x1>0, x2 >0, x3 >0

Dan f(x1, x2, x3) = 0 untuk nilai yang lainnya. Jadi P(X1<2, 1< X2<3, X3>2) = e-x 1-x2-x3 dx1 dx2 dx3 = (1 – e-2)(e-1 - e-3) e-2 = 0,0376