DIMENSI TIGA KELAS X SEMESTER 2.

Slides:



Advertisements
Presentasi serupa
MENGGAMBAR BANGUN RUANG
Advertisements

Dimensi Tiga (Proyeksi & Sudut).
PROGRAM STUDI PENDIDIKAN MATEMATIKA
di Matematika SMA Kelas X Semester 2
Muhammad Zainal Abidin | SMAN 1 Bone-Bone
BAB 9 DIMENSI TIGA.
Dimensi tiga jarak.
IRISAN BANGUN RUANG.
NAMA KELOMPOK : YUSNITA RAHMAWATI (A ) NOUR AFIFAH FITRIYANI (A )
3. Menggambar dan menghitung besar sudut antara dua bidang.
Media Pembelajaran Berbasis Teknologi Informasi & Komunikasi
PROYEKSI.
SK/KD INDIKATOR MATERI LATIHAN TEST.
LIMAS By zainul gufron s..
DIMENSI TIGA Oleh : Dra. Enok Maesaroh.
Kedudukan Titik, Garis, dan Bidang
Nama Anggota Kelompok:
BANGUN RUANG KUBUS MEDIA PEMBELAJARAN Oleh: NI KETUT SUNARTI
BANGUN RUANG SISI DATAR (KUBUS & UNSUR- UNSURNYA)
ASSALAMU’ALAIKUM WR.WB
TUGAS MEDIA PEMBELAJARAN MATEMATIKA
KUBUS Karya : Nuratikah NPM :
Dimensi Tiga (Jarak) SMA 5 Mtr.
STANDAR KOMPETENSI dan KOMPETENSI DASAR
RUANG DIMENSI TIGA
Kubus.
MATEMATIKA SMA KELAS X Oleh HARSUMDA.
ﺒﺴﻢﺍﷲﺍﻠﺮﺣﻣﻥﺍﻟﺮﺣﯿﻢ ASSALAMU'ALAIKUM Wr. Wb..
BANGUN RUANG KUBUS Definisi Unsur Jaring-jaring Luas Volume Definisi
MENENTUKAN JARAK PADA BANGUN RUANG
Dimensi Tiga X MIA 2 Ayu Amrita (03) Fatima Rahmanita (09)
Nama Kelompok : 1. AMALIA FIDYA W. S
Tugas media pembelajaran
RUANG DIMENSI TIGA OLEH TIM MGMP MAT SMAN 1 GLENMORE
GEOMETRI 1. Nyimas Ayu 2. Egi Diasafitri 3. Hesty Monica
Dimensi Tiga (Proyeksi & Sudut).
Pembelajaran Berbasis IT
MENENTUKAN JARAK DALAM RUANG
Standar Kompetensi : Menentukan jarak yang melibatkan titik, garis, dan bidang . Kompetensi Dasar : Menentukan jarak dari titik ke garis dan dari titik.
BANGUN RUANG Kelas X semester 2 PPPK PETRA Surabaya SK / KD Indikator
Irisan pada Bangun Ruang
Media Pembelajaran Matematika Jarak Pada Bangun Ruang
Ekayani Khusmawati Syukrillah
GEOMETRI ●.
MENGENAL KUBUS Pada Gambar di samping di perlihatkan kubus ABCD.EFGH
PRESENTASI BAHAN AJAR OLEH DRS. AHMAD DAABA SMA NEGERI 4 KENDARI.
GEOMETRI ●.
KEDUDUKAN GARIS TERHADAP BIDANG
BANGUN RUANG Pengertian
Disusun oleh : Nur Maidah Naimah (A )
VOLUME DAN LUAS PERMUKAAN KUBUS
BANGUN RUANG SISI DATAR
RUANG DIMENSI TIGA SK / KD INDIKATOR MATERI LATIHAN UJI KOMPETENSI.
VENISSA DIAN MAWARSARI, M.Pd
Dimensi Tiga Tugas sesi 3 ddom.
Dimensi tiga: IRISAN KELAS III SMK SEMESTER 1 Oleh: Sukani, S.Pd.
GEOMETRI Titik, Garis dan Bidang.
Irisan pada Bangun Ruang
KUBUS DAN BALOK Bagian Kubus/Balok Jumlah Keterangan Rusuk 12
KUBUS UNSUR-UNSUR KUBUS.
Dimensi tiga: IRISAN KELAS III SMK SEMESTER 1 Oleh: Sukani, S.Pd.
Nisa arifiani DIMENSI TIGA JARAK.
JARAK DAN SUDUT Anton Dimas Fikri Achmad Darmawan M. Nirwan Firdausi
Irisan pada Bangun Ruang
Dimensi Tiga ( Proyeksi & Sudut ) Muhammad Zainal Abidin | SMAN 1 Bone-Bone
PRESENTASI BANGUN RUANG ALAN PRIYA SATRIO UTOMO KELAS : VIII B ABSEN : 03 ALAN PRIYA SATRIO UTOMO KELAS : VIII B ABSEN : 03 KUBUS.
Dimensi Tiga (Proyeksi & Sudut).
KUBUS DAN BALOK Oleh : SYUKRIA HUSNUL K A
1. 2 Setelah menyaksikan tayangan ini anda dapat Menentukan jarak antara unsur-unsur dalam ruang dimensi tiga.
BAB 8 BANGUN RUANG SISI DATAR. KOMPETENSI DATAR 3.9 Membedakan dan menentukan luas permukaan dan volume bangun ruang sisi datar (kubus, balok, prisma,
Transcript presentasi:

DIMENSI TIGA KELAS X SEMESTER 2

Menentukan kedudukan titik, garis, dan bidang dalam ruang dimensi tiga Kompetensi Dasar Menentukan kedudukan titik, garis, dan bidang dalam ruang dimensi tiga Menentukan jarak dari titik ke garis dan dari titik ke bidang dalam ruang dimensi tiga Menentukan besar sudut antara garis dan bidang dan antara dua bidang dalam ruang dimensi tiga

TITIK Definisi: Titik tidak dapat didefinisikan tetapi dapat dinyatakan dengan tanda noktah (.). Nama sebuah titik biasanya menggunakan huruf kapital Contoh : Lihat Kubus ABCD.EFGH di samping Titik-titik pada kubus ABCD.EFGH tersebut adalah: A, B, C, D, E, F, G, dan H H G E F D C A B

garis Definisi : Garis adalah deretan titik-titik (tak berhingga yang saling bersebelahan dan memanjang ke dua arah. Contoh : Lihat Kubus ABCD. EFGH di samping Garis-garis pada kubus ABCD.EFGH antara lain AB CG BG (diagonal sisi) AG (diagonal ruang) H G E F D C A B

BIDANG Definisi Bidang Datar : Bidang merupakan titik – titik yang mempunyai ukuran luas. Contoh bidang pada kubus ABCD.EFGH - Bidang ABCD - Bidang DCGH - Bidang BDG H G E F D C A B

KEDUDUKAN TITIK, GARIS, DAN BIDANG Kedudukan Titik dan Garis Kedudukan Titik dan Bidang Kedudukan 2 buah Garis Kedudukan Garis dan Bidang Kedudukan 2 buah Bidang

Kedudukan titik dan garis Titik Terletak pada Garis Contoh pada Kubus ABCD.EFGH B terletak pada AB P terletak paba CG Q terletak pada AB Titik Di Luar Garis C di luar garis AD P di luar garis BF H G E F P D C A B Q

KEDUDUKAN TITIK DAN BIDANG Titik Terletak pada Bidang Contoh pada Kubus ABCD .EFGH B pada bidang ABCD P pada bidang DCGH Q pada bidang ABCD Titik Di Luar Bidang C di luar bidang ADHE P di luar bidang BDG H G E F P D C A B Q

KEDUDUKAN 2 BUAH GARIS Saling Berimpit AB dan AB AB dan BQ CONTOH KEDUDUKAN 2 GARIS PADA KUBUS ABCD.EFGH Saling Berimpit AB dan AB AB dan BQ Saling sejajar AB dan DC EH dan FG Saling Berpotongan AB dan BC EG dan AP Saling Bersilangan BC dan DH AP dan BG H G E F P D C A B Q

KEDUDUKAN GARIS DAN BIDANG CONTOH KEDUDUKAN GARIS DAN BIDANG PADA KUBUS ABCD.EFGH Garis Terletak pada Bidang BC pada ABCD AG pada ACGE Garis Sejajar Bidang BC sejajar ADHE EF sejajar DCGH Garis Memotong/Menembus Bidang AB memotong BCGF CE memotong BDG H G E F D C A B

KEDUDUKAN 2 BUAH BIDANG Saling Berimpit ABCD dan ABD ABD dan BCD CONTOH KEDUDUKAN 2 BUAH BIDANG PADA KUBUS ABCD.EFGH Saling Berimpit ABCD dan ABD ABD dan BCD Saling Sejajar BCGF dan ADHE BDG dan AFH Saling Berpotongan ABFE dan BCGF ACGE dan BDG H G E F D C A B

Kita akan membahas jarak antara: titik ke titik titik ke garis titik ke bidang garis ke garis garis ke bidang bidang ke bidang

Jarak titik ke titik B A Gambar disamping, menunjukan jarak titik A ke B, adalah panjang ruas garis yang menghubungkan titik A ke B B Jarak dua titik A

Contoh Diketahui kubus ABCD.EFGH dengan panjang rusuk a cm. Tentukan jarak titik A ke C, titik A ke G, dan jarak titik A ke tengah-tengah bidang EFGH A B C D H E F G P a cm a cm a cm

Jadi diagonal sisi AC = cm Pembahasan Perhatikan segitiga ABC yang siku-siku di B, maka AC = = Jadi diagonal sisi AC = cm A B C D H E F G a cm

Jarak titik ke Garis Gambar disamping, menunjukan jarak titik A ke garis g adalah panjang ruas garis yang ditarik dari titik A dan tegak lurus garis g Jarak titik dan garis g

Contoh Diketahui T.ABCD limas beraturan. Panjang rusuk alas 12 cm, dan panjang rusuk tegak 12√2 cm. Jarak A ke TC adalah…. T C A B D 12√2 cm 12 cm

Pembahasan Jarak A ke TC = AP AC = diagonal persegi = 12√2 AP = = Jadi jarak A ke TC = 6√6 cm 12 cm 12√2 cm T C A B D 6√2 P 6√2 12√2

 Jarak titik ke bidang Gambar disamping, menunjukan jarak A antara titik A ke bidang V adalah panjang ruas garis yang menghubungkan tegak lurus titik A ke bidang V A  V

Contoh Diketahui kubus ABCD.EFGH dengan panjang rusuk 10 cm Jarak titik A ke bidang BDHF adalah…. A B C D H E F G P 10 cm

Jadi jarak A ke BDHF = 5√2 cm Pembahasan Jarak titik A ke bidang BDHF diwakili oleh panjang AP.(APBD) AP = ½ AC (ACBD) = ½.10√2 = 5√2 A B C D H E F G P 10 cm Jadi jarak A ke BDHF = 5√2 cm

Jarak garis ke garis Gambar disamping, menunjukan jarak antara garis g ke garis h adalah panjang ruas garis yang menghubungkan tegak lurus kedua garis tersebut g P Q h

Contoh Diketahui kubus ABCD.EFGH dengan panjang rusuk 4 cm. Tentukan jarak: A B C D H E F G 4 cm Garis AB ke garis HG Garis AD ke garis HF Garis BD ke garis EG

Penyelesaian Jarak garis: AB ke garis HG = AH (AH  AB, AH  HG) = 4√2 (diagonal sisi) b.AD ke garis HF = DH (DH  AD, DH  HF = 4 cm A B C D H E F G 4 cm

Penyelesaian Jarak garis: b.BD ke garis EG = PQ (PQ  BD, = 4 cm PQ  EG = AE = 4 cm A B C D H E F G Q P 4 cm

Jarak garis ke bidang Gambar disamping, menunjukan Jarak antara garis g ke bidang V adalah panjang ruas garis yang menghubungkan tegak lurus garis dan bidang g V

Contoh Diketahui kubus ABCD.EFGH dengan panjang rusuk 8 cm Jarak garis AE ke bidang BDHF adalah…. A B C D H E F G P 8 cm

Jadi jarak A ke BDHF = 4√2 cm Pembahasan Jarak garis AE ke bidang BDHF diwakili oleh panjang AP.(AP AE AP  BDHF) AP = ½ AC(ACBDHF) = ½.8√2 = 4√2 A B C D H E F G P 8 cm Jadi jarak A ke BDHF = 4√2 cm

Jarak Bidang dan Bidang peragaan, menunjukan jarak antara bidang W dengan bidang V adalah panjang ruas garis yang tegak lurus bidang W dan tegak lurus bidang V W W Jarak Dua Bidang V

Contoh Diketahui kubus ABCD.EFGH dengan panjang rusuk 6 cm. Jarak bidang AFH ke bidang BDG adalah…. A B C D H E F G 6 cm 6 cm

Jadi jarak AFH ke BDG = 4√2 cm Pembahasan Jarak bidang AFH ke bidang BDG diwakili oleh PQ PQ = ⅓ CE (CE diagonal ruang) PQ = ⅓. 9√3 = 3√3 A B C D H E F G Q 6 cm P 6 cm Jadi jarak AFH ke BDG = 4√2 cm

Sudut Pada Bangun Ruang: Sudut antara dua garis Sudut antara garis dan bidang Sudut antara bidang dan bidang

Sudut antara Dua Garis Yang dimaksud dengan besar sudut antara dua garis adalah besar sudut terkecil yang dibentuk oleh kedua garis tersebut m k

Contoh Diketahui kubus ABCD.EFGH Besar sudut antara garis-garis: a. AB dengan BG b. AH dengan AF c. BE dengan DF A B C D H E F G

Pembahasan Besar sudut antara garis-garis: a. AB dengan BG = 900 b. AH dengan AF = 600 (∆ AFH smss) c. BE dengan DF = 900 (BE  DF) A B C D H E F G

Garis dan Bidang Sudut antara garis a dan bidang  adalah sudut antara dilambangkan (a,) adalah sudut antara garis a dan proyeksinya pada . Sudut antara garis PQ dengan V = sudut antara PQ dengan P’Q =  PQP’ P Q V P’

sudut antara TA dan bidang ABCD adalah…. Contoh Pada limas segiempat beraturan T.ABCD yang semua rusuknya sama panjang, T A B C D a cm sudut antara TA dan bidang ABCD adalah….

sudut antara TA dan bidang ABCD adalah sudut antara TA dan AC Pembahasan • TA = TB = a cm • AC = a√2 (diagonal persegi) • ∆TAC = ∆ siku-siku samakaki T A B C D a cm sudut antara TA dan bidang ABCD adalah sudut antara TA dan AC yang besarnya 450

Bidang dan Bidang Sudut antara bidang  dan bidang  adalah sudut antara garis g dan h, dimana g  (,) dan h  (,). (,) garis potong bidang  dan   h (,)  g

Contoh Diketahui kubus ABCD.EFGH a. Gambarlah sudut antara bidang BDG dengan ABCD b. Tentukan nilai sinus sudut antara BDG dan ABCD! A B C D H E F G

Jadi (BDG,ABCD) = (GP,PC) =GPC Pembahasan a. (BDG,ABCD) • garis potong BDG dan ABCD  BD • garis pada ABCD yang  BD  AC • garis pada BDG yang  BD  GP A B C D H E F G P Jadi (BDG,ABCD) = (GP,PC) =GPC

Jadi, sin(BDG,ABCD) = ⅓√6 Pembahasan b. sin(BDG,ABCD) = sin GPC = = ⅓√6 A B C D H E F G P Jadi, sin(BDG,ABCD) = ⅓√6