1 Pertemuan 21 Arithmetic: I Matakuliah: T0324 / Arsitektur dan Organisasi Komputer Tahun: 2005 Versi: 1
2 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Membandingkan berbagai jenis operasi aritmatika didalam sistem komputer digital ( C4 ) ( No TIK : 10 )
3 Chapter 6. Arithmetic: I (OFC5)
4 s i = c i +1 = Figure 6.1. Logic specification for a stage of binary addition Y Example: 1 0 == Legend for stagei x i y i Carry-inc i Sums i Carry-outc i+1 X Z x i y i s i Carry-out c i+1 Carry-in c i x i y i c i x i y i c i x i y i c i x i y i c i x i y i c i = +++ y i c i x i c i x i y i ++
5
6
7 Figure 6.8. Sign extension of negative multiplicand 13- 143- 11+ () Sign extension is shown in blue
8 Figure 6.9. Normal and Booth multiplication schemes 's complement of the multiplicand
9 Figure Booth recoding of a multiplier
10 Figure Booth multiplication with a negative multiplier 13+() 78-
11 Multiplier Biti i 1 - Version of multiplicand selected by biti M 1+M 1 M 0M Figure Booth multiplier recoding table.
12 Figure Booth recoded multipliers Worst-case multiplier Ordinary multiplier Good multiplier
13 Pertemuan 22 Arithmetic: II Matakuliah: T0324 / Arsitektur dan Organisasi Komputer Tahun: 2005 Versi: 1
14 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Membandingkan berbagai jenis operasi aritmatika didalam sistem komputer digital ( C4 ) ( No TIK : 10 )
15 Chapter 6. Arithmetic: II (OFC6)
16
17 Figure Ripple-carry and carry-save arrays for the multiplication operation M Q = P for 4-bit operands.
18 Figure A multiplication example used to illustrate carry-save addition as shown in Figure M Q A B C D E F (2,835) X (45) (63) Product
19 Figure Schematic representation of the carry-save addition operations in Figure 6.18.
20 Figure Longhand division examples
21 q n1- m n1- -bit Divisor M Control sequencer Dividend Q Shift left adder a n1- a 0 q 0 m 0 a n 0 Add/Subtract Quotient setting n1+ Figure Circuit arrangement for binary division. A
(a) Unnormalized value (b) Normalized version (There is no implicit 1 to the left of the binary point.) Value represented 2 9 +=... Value represented 2 6 += Figure Floating-point normalization in IEEE single-precision format. excess-127 exponent
23 RepresentationExamples Sign and magnitude 9's complement 10's complement Figure P6.1. Signed numbers in base 10 used in Problem 70
24 12 bits 5 bits excess-15 exponent 6 bits fractional mantissa 1 bit for sign of number Figure P6.2. Floating-point format used in Problem signifies -1 signifies
25 Figure P6.3. 1's-complement addition used in Problem (3) ( (6) ( ) 2- 3-)