Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
TRIGONOMETRI
2
Perbandingan Trigonometri Suatu Sudut
C B de mi sa sin A = sisi di depan sudut = de sisi miring mi cos A = sisi di samping sudut = sa sisi miring mi tan A = sisi di depan sudut = de sisi di samping sudut sa Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
3
Directed by : In in Indriani, S.Si, SMKN 7 Bandung…… .2008
Contoh : Tentukan nilai perbandingan trigonometri untuk setiap segitiga siku-siku berikut: 3 4 x A Jawab: Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
4
Directed by : In in Indriani, S.Si, SMKN 7 Bandung…… .2008
Contoh : 2. Diketahui sin A = 0,6 dan A sudut lancip. Tentukan nilai dari cos A dan tan A Jawab: A x 6 10 Kuadran II Sin + Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
5
Directed by : In in Indriani, S.Si, SMKN 7 Bandung…… .2008
Sudut-sudut Istimewa A 0o 30o 45o 60o 90o 180o 270o 360o Sin A 1 -1 Cos A Tan A Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
6
Perbandingan Trigonometri di Berbagai Kuadran
Kuadran I sin (90-A)o = cos A cos (90-A)o = sin A tan (90-A)o = cot A Kuadran II sin + Kuadran I Semua + Kuadran III tan + Kuadran IV cos + Kuadran II sin (180-A)o = sin A cos (180-A)o = -cos A tan (180-A)o = -tan A Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
7
Directed by : In in Indriani, S.Si, SMKN 7 Bandung…… .2008
Kuadran III sin (180+A)o = -sin A cos (180+A)o = -cos A tan (180+A)o = tan A Sudut Negatif sin (-A)o = -sin A cos (-A)o = cos A tan (-A)o = -tan A Kuadran IV sin (360-A)o = -sin A cos (360-A)o = cos A tan (360-A)o = -tan A Perioditas Trigonometri sin (n.360+A)o = sin A cos (n.360+A)o = cos A tan (n.180+A)o = tan A Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
8
Directed by : In in Indriani, S.Si, SMKN 7 Bandung…… .2008
Contoh: 1. Tentukan nilai dari sin 150o Jawab: sin 150o = sin (180-30)o = sin 30o = 2. Tentukan nilai dari cos 1950o Jawab: cos 1950o = cos (5x )o = cos 150o = cos (180-30)o = -cos 30o = Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
9
Koordinat Kartesius dan Koordinat Kutub
y O x P(x,y) P(r,) r Koordinat Kartesius Koordinat Kutub Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
10
KONVERSI KOORDINAT KARTESIUS KE KOORDINAT KUTUB DAN SEBALIKNYA
11
Directed by : In in Indriani, S.Si, SMKN 7 Bandung…… .2008
Contoh: Tentukan koordinat kutub jika koordinat kartesius dari P Jawab: x y O r Karena P berada di kuadran III Maka Jadi koordinat kutubnya Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
12
Directed by : In in Indriani, S.Si, SMKN 7 Bandung…… .2008
Contoh: 2. Tentukan koordinat kartesius jika koordinat kutub P(6,120o) Jawab: Jadi koordinat karetesiusnya Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
13
Identitas Trigonometri
Buktikan bahwa : Bukti: Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
14
Identitas Trigonometri
Buktikan bahwa : Bukti: Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
15
Aturan Sinus dan Cosinus
B b a c Aturan Sinus Aturan Cosinus Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
16
Directed by : In in Indriani, S.Si, SMKN 7 Bandung…… .2008
Contoh: 1. Diketahui segitiga ABC dengan besar A = 30o,B=45o, dan sisi b = 10 cm. Tentukan a. besar C b. panjang a c. panjang c Jawab: Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
17
Directed by : In in Indriani, S.Si, SMKN 7 Bandung…… .2008
Contoh: 2. Hitunglah panjang ketiga sisi jika diketahui a = 6 cm, c = 4 cm, Jawab: Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
18
Directed by : In in Indriani, S.Si, SMKN 7 Bandung…… .2008
Luas Daerah Segitiga Luas daerah segitiga A C B b a c Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
19
Directed by : In in Indriani, S.Si, SMKN 7 Bandung…… .2008
Contoh: Hitunglah luas daerah segitiga ABC sama sisi dengan panjang sisi 20 cm Jawab: Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
20
Rumus Trigonometri Jumlah dan Selisih Dua Sudut
Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
21
Directed by : In in Indriani, S.Si, SMKN 7 Bandung…… .2008
Contoh: Dengan menggunakan sudut-sudut istimewa tentukan nilai dari sin 15o Jawab: Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
22
Directed by : In in Indriani, S.Si, SMKN 7 Bandung…… .2008
Contoh: 2. Jika sin 5o = p dan cos 5o = q dalam p dan q: sin 35o Jawab: Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
23
Persamaan Trigonometri
sin x = A b. cos x = A c. Diubah ke dalam bentuk dengan Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
24
Directed by : In in Indriani, S.Si, SMKN 7 Bandung…… .2008
Contoh: Tentukan himpunan penyelesaian dari persamaan berikut, untuk a b. Jawab: Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
25
Directed by : In in Indriani, S.Si, SMKN 7 Bandung…… .2008
Jawab: Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
26
Directed by : In in Indriani, S.Si, SMKN 7 Bandung…… .2008
Contoh: 2. Tentukan himpunan penyelesaian dari , untuk Jawab: Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
27
Directed by : In in Indriani, S.Si, SMKN 7 Bandung…… .2008
Terima Kasih Directed by : In in Indriani, S.Si, SMKN 7 Bandung……
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.