Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Selamat Datang Dalam Kuliah Terbuka Ini 1. Kuliah terbuka kali ini berjudul “Pilihan Topik Matematika -I” 2.

Presentasi serupa


Presentasi berjudul: "Selamat Datang Dalam Kuliah Terbuka Ini 1. Kuliah terbuka kali ini berjudul “Pilihan Topik Matematika -I” 2."— Transcript presentasi:

1 Selamat Datang Dalam Kuliah Terbuka Ini 1

2 Kuliah terbuka kali ini berjudul “Pilihan Topik Matematika -I” 2

3 Disajikan oleh Sudaryatno Sudirham melalui www.darpublic.com www.darpublic.com 3

4 Dalam sesi-5 ini kita akan membahas Fungsi Logaritma Natural Fungsi Eksponensial Fungsi Hiperbolik 4

5 Fungsi Logaritma Natural 5

6 Bilangan Natural Logaritma natural adalah logaritma dengan menggunakan basis bilangan e Bilangan e ini, seperti halnya bilangan , adalah bilangan-nyata, dengan desimal tak terbatas. Sampai dengan 10 angka di belakang koma, nilainya adalah e = 2,7182818284 6

7 Kurva y = ln x Fungsi Logaritma Natural Definisi ln x x ln x t 0 1 2 3 4 5 6 01234 y 1/t luas bidang antara fungsi 1/t dan sumbu-x yang dibatasi oleh t = 1 dan t = x 1234 x -2 -1,5 -0,5 0 0,5 1 1,5 2 0 y y = ln x e = 2,7182818284….. e 7

8 Sifat-Sifat 8

9 Fungsi Eksponensial 9

10 Antilogaritma Antilogaritma adalah inversi dari logaritma Fungsi Eksponensial Fungsi eksponensial yang sering kita jumpai adalah fungsi eksponensial dengan eksponen negatif Faktor u(x) membuat fungsi ini muncul pada x = 0 Namun demikian faktor ini biasa tidak lagi dituliskan dengan pengertian bahwa fungsi eksponensial tetap muncul pada t = 0 10

11 Kurva Fungsi Eksponensial x 0,511,522,533,54 0 0,2 0,4 0,6 0,8 1 0 y e  x e2xe2x Makin negatif eksponen fungsi ini, makin cepat ia menurun mendekati sumbu-x 11 Penurunan kurva fungsi eksponensial ini sudah mencapai sekitar 36% dari nilai awalnya (yaitu nilai pada x = 0), pada saat x = 1/a Pada saat x = 5/a, kurva sudah sangat menurun mendekati sumbu-x, nilai fungsi sudah di bawah 1% dari nilai awalnya Oleh karena itu fungsi eksponensial biasa dianggap sudah bernilai nol pada x = 5/a

12 Persamaan umum fungsi eksponensial dengan amplitudo A dengan waktu sebagai peubah bebas adalah yang dituliskan dengan singkat  = 1/a disebut konstanta waktu makin kecil , makin cepat fungsi eksponensial menurun Pada saat t = 5 , nilai fungsi sudah di bawah 1% dari A fungsi eksponensial dianggap sudah bernilai nol pada t = 5  12

13 Gabungan Fungsi Eksponensial t/t/ A 012345 13

14 Fungsi Hiperbolik 14

15 Definisi Kombinasi tertentu dari fungsi eksponensial membentuk fungsi hiperbolik, seperti cosinus hiperbolik (cosh) dan sinus hiperbolik (sinh) Fungsi hiperbolik yang lain 15

16 Kurva-Kurva Fungsi Hiperbolik x y -4 -3 -2 0 1 2 3 4 -2012 16

17 y x -4 -3 -2 0 1 2 3 4 -2012 17

18 0 1 2 3 4 -2012 y x 18

19 x y -4 -3 -2 0 1 2 3 4 -2012 19

20 x y 0 0 -4 -3 -2 1 2 3 4 -212 20

21 untuk sinh x dan cosh x terdapat hubungan Jika untuk sin x dan cos x kita kenal hubungan: Identitas Beberapa Identitas: 21

22 Kuliah Terbuka Pilihan Topik Matematika Sesi 5 Sudaryatno Sudirham 22


Download ppt "Selamat Datang Dalam Kuliah Terbuka Ini 1. Kuliah terbuka kali ini berjudul “Pilihan Topik Matematika -I” 2."

Presentasi serupa


Iklan oleh Google