Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Sistem Bilangan dan Konversi Bilangan. SISTEM BILANGAN Suatu sistem bilangan terdiri dari: Basis (base/radix) : Angka terbesar yang Basis (base/radix)

Presentasi serupa


Presentasi berjudul: "Sistem Bilangan dan Konversi Bilangan. SISTEM BILANGAN Suatu sistem bilangan terdiri dari: Basis (base/radix) : Angka terbesar yang Basis (base/radix)"— Transcript presentasi:

1 Sistem Bilangan dan Konversi Bilangan

2 SISTEM BILANGAN Suatu sistem bilangan terdiri dari: Basis (base/radix) : Angka terbesar yang Basis (base/radix) : Angka terbesar yang digunakan dalam sistem bilangan. Absolut Value : Digit yang berbeda. Absolut Value : Digit yang berbeda. Position Value : perpangkatan dari basis-nya. Position Value : perpangkatan dari basis-nya. 2

3 SistemRadiksHimpunan/elemen Digit Contoh Desimalr=10 r=2 r=16 r= 8 {0,1,2,3,4,5,6,7,8,9} Biner {0,1,2,3,4,5,6,7} {0,1} {0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F} FF 16 Oktal Heksadesimal Biner Heksa A B C D E F Desimal

4 Konversi Radiks-r ke desimal Contoh: Contoh: = 1    = 1    2 0 = = = = = 5    = 5    8 0 = = = = A 16 = 2   A 16 = 2   16 0 = = = = 42 10

5 Konversi Bilangan Desimal ke Biner Konversi bilangan desimal bulat ke bilangan Biner: Gunakan pembagian dgn 2 secara suksesif sampai sisanya = 0. Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB). Konversi bilangan desimal bulat ke bilangan Biner: Gunakan pembagian dgn 2 secara suksesif sampai sisanya = 0. Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB).

6 Contoh: Konersi ke biner: Contoh: Konersi ke biner: 179 / 2 = 89 sisa 1 (LSB) 179 / 2 = 89 sisa 1 (LSB) / 2 = 44 sisa 1 / 2 = 44 sisa 1 / 2 = 22 sisa 0 / 2 = 22 sisa 0 / 2 = 11 sisa 0 / 2 = 11 sisa 0 / 2 = 5 sisa 1 / 2 = 5 sisa 1 / 2 = 2 sisa 1 / 2 = 2 sisa 1 / 2 = 1 sisa 0 / 2 = 1 sisa 0 / 2 = 0 sisa 1 (MSB) / 2 = 0 sisa 1 (MSB)  =  = MSB LSB MSB LSB

7 Konversi Bilangan Desimal ke Oktal Konversi bilangan desimal bulat ke bilangan oktal: Gunakan pembagian dgn 8 secara suksesif sampai sisanya = 0. Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB). Konversi bilangan desimal bulat ke bilangan oktal: Gunakan pembagian dgn 8 secara suksesif sampai sisanya = 0. Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB).

8 Contoh: Konversi ke oktal: Contoh: Konversi ke oktal: 179 / 8 = 22 sisa 3 (LSB) 179 / 8 = 22 sisa 3 (LSB) / 8 = 2 sisa 6 / 8 = 2 sisa 6 / 8 = 0 sisa 2 (MSB) / 8 = 0 sisa 2 (MSB)  =  = MSB LSB MSB LSB

9 Konversi Bilangan Desimal ke Hexadesimal Konversi bilangan desimal bulat ke bilangan hexadesimal: Gunakan pembagian dgn 16 secara suksesif sampai sisanya = 0. Sisa- sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB). Konversi bilangan desimal bulat ke bilangan hexadesimal: Gunakan pembagian dgn 16 secara suksesif sampai sisanya = 0. Sisa- sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB).

10 Contoh: Konversi ke hexadesimal: Contoh: Konversi ke hexadesimal: 179 / 16 = 11 sisa 3 (LSB) 179 / 16 = 11 sisa 3 (LSB) / 16 = 0 sisa 11 (dalam bilangan hexadesimal berarti B)MSB / 16 = 0 sisa 11 (dalam bilangan hexadesimal berarti B)MSB  = B3 16  = B3 16 MSB LSB MSB LSB

11 Konversi Bilangan Biner ke Oktal Untuk mengkonversi bilangan biner ke bilangan oktal, lakukan pengelompokan 3 digit bilangan biner dari posisi LSB sampai ke MSB

12 Contoh: konversikan ke bilangan oktal Contoh: konversikan ke bilangan oktal Jawab : Jawab : Jadi = Jadi = 263 8

13 Konversi Bilangan Oktal ke Biner Sebaliknya untuk mengkonversi Bilangan Oktal ke Biner yang harus dilakukan adalah terjemahkan setiap digit bilangan oktal ke 3 digit bilangan biner

14 Contoh Konversikan ke bilangan biner. Contoh Konversikan ke bilangan biner. Jawab: Jawab: Jadi = Karena 0 didepan tidak ada artinya kita bisa menuliskan Jadi = Karena 0 didepan tidak ada artinya kita bisa menuliskan

15 Konversi Bilangan Biner ke Hexadesimal Untuk mengkonversi bilangan biner ke bilangan hexadesimal, lakukan pengelompokan 4 digit bilangan biner dari posisi LSB sampai ke MSB

16 Contoh: konversikan ke bilangan heksadesimal Contoh: konversikan ke bilangan heksadesimal Jawab : Jawab : B 3 B 3 Jadi = B3 16 Jadi = B3 16

17 Konversi Bilangan Hexadesimal ke Biner Sebaliknya untuk mengkonversi Bilangan Hexadesimal ke Biner yang harus dilakukan adalah terjemahkan setiap digit bilangan Hexadesimal ke 4 digit bilangan biner

18 Contoh Konversikan B3 16 ke bilangan biner. Contoh Konversikan B3 16 ke bilangan biner. Jawab: B 3 Jawab: B Jadi B3 16 = Jadi B3 16 =

19 Tugas Konversikan Bilangan di Bawah ini Konversikan Bilangan di Bawah ini = …… = …… = …… = …… = …… = …… 10 7FD 16 = …… 8 7FD 16 = …… 8 29A 16 = …… 10 29A 16 = …… = …… = …… = …… = …… = …… = …… 16


Download ppt "Sistem Bilangan dan Konversi Bilangan. SISTEM BILANGAN Suatu sistem bilangan terdiri dari: Basis (base/radix) : Angka terbesar yang Basis (base/radix)"

Presentasi serupa


Iklan oleh Google