Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Bahasa Assembly Konversi Bilangan Pertemuan ke-2 Ema Maliachi,S.kom.

Presentasi serupa


Presentasi berjudul: "Bahasa Assembly Konversi Bilangan Pertemuan ke-2 Ema Maliachi,S.kom."— Transcript presentasi:

1 Bahasa Assembly Konversi Bilangan Pertemuan ke-2 Ema Maliachi,S.kom

2 Sistem Bilangan dan Konversi Bilangan

3 Pendahuluan Ada beberapa sistem bilangan yang digunakan dalam sistem digital. Yang paling umum adalah sistem bilangan desimal, biner, oktal dan heksadesimal Ada beberapa sistem bilangan yang digunakan dalam sistem digital. Yang paling umum adalah sistem bilangan desimal, biner, oktal dan heksadesimal Sistem bilangan desimal merupakan sistem bilangan yang paling familier dengan kita karena berbagai kemudahannya yang kita pergunakan sehari – hari. Sistem bilangan desimal merupakan sistem bilangan yang paling familier dengan kita karena berbagai kemudahannya yang kita pergunakan sehari – hari.

4 Sistem Bilangan Secara matematis sistem bilangan bisa ditulis seperti contoh di bawah ini: Secara matematis sistem bilangan bisa ditulis seperti contoh di bawah ini:

5 Contoh: Contoh: Bilangan desimal: Bilangan desimal: = 5x x x x x x = 5x x x x x x = 5x x x x 1 + 6x x0.01 = 5x x x x 1 + 6x x0.01 Bilangan biner (radiks=2, digit={0, 1}) Bilangan biner (radiks=2, digit={0, 1}) = 1      1 = = 1      1 = 1910 MSB LSB MSB LSB = 1x4 + 0x2 + 1x1 + 0x.5 + 0x x.125 = = 1x4 + 0x2 + 1x1 + 0x.5 + 0x x.125 =

6 SistemRadiksHimpunan/elemen Digit Contoh Desimalr=10 r=2 r=16 r= 8 {0,1,2,3,4,5,6,7,8,9} Biner {0,1,2,3,4,5,6,7} {0,1} {0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F} FF 16 Oktal Heksadesimal Biner Heksa A B C D E F Desimal

7 Konversi Radiks-r ke desimal Rumus konversi radiks-r ke desimal: Rumus konversi radiks-r ke desimal: Contoh: Contoh: = 1    = 1    2 0 = = = = = 5    = 5    8 0 = = = = A 16 = 2   A 16 = 2   16 0 = = = = 42 10

8 Konversi Bilangan Desimal ke Biner Konversi bilangan desimal bulat ke bilangan Biner: Gunakan pembagian dgn 2 secara suksesif sampai sisanya = 0. Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB). Konversi bilangan desimal bulat ke bilangan Biner: Gunakan pembagian dgn 2 secara suksesif sampai sisanya = 0. Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB).

9 Contoh: Konersi ke biner: Contoh: Konersi ke biner: 179 / 2 = 89 sisa 1 (LSB) 179 / 2 = 89 sisa 1 (LSB) / 2 = 44 sisa 1 / 2 = 44 sisa 1 / 2 = 22 sisa 0 / 2 = 22 sisa 0 / 2 = 11 sisa 0 / 2 = 11 sisa 0 / 2 = 5 sisa 1 / 2 = 5 sisa 1 / 2 = 2 sisa 1 / 2 = 2 sisa 1 / 2 = 1 sisa 0 / 2 = 1 sisa 0 / 2 = 0 sisa 1 (MSB) / 2 = 0 sisa 1 (MSB)  =  = MSB LSB MSB LSB

10 Konversi Bilangan Desimal ke Oktal Konversi bilangan desimal bulat ke bilangan oktal: Gunakan pembagian dgn 8 secara suksesif sampai sisanya = 0. Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB). Konversi bilangan desimal bulat ke bilangan oktal: Gunakan pembagian dgn 8 secara suksesif sampai sisanya = 0. Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB).

11 Contoh: Konversi ke oktal: Contoh: Konversi ke oktal: 179 / 8 = 22 sisa 3 (LSB) 179 / 8 = 22 sisa 3 (LSB) / 8 = 2 sisa 6 / 8 = 2 sisa 6 / 8 = 0 sisa 2 (MSB) / 8 = 0 sisa 2 (MSB)  =  = MSB LSB MSB LSB

12 Konversi Bilangan Desimal ke Hexadesimal Konversi bilangan desimal bulat ke bilangan hexadesimal: Gunakan pembagian dgn 16 secara suksesif sampai sisanya = 0. Sisa- sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB). Konversi bilangan desimal bulat ke bilangan hexadesimal: Gunakan pembagian dgn 16 secara suksesif sampai sisanya = 0. Sisa- sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB).

13 Contoh: Konversi ke hexadesimal: Contoh: Konversi ke hexadesimal: 179 / 16 = 11 sisa 3 (LSB) 179 / 16 = 11 sisa 3 (LSB) / 16 = 0 sisa 11 (dalam bilangan hexadesimal berarti B)MSB / 16 = 0 sisa 11 (dalam bilangan hexadesimal berarti B)MSB  = B3 16  = B3 16 MSB LSB MSB LSB

14 Konversi Bilangan Biner ke Oktal Untuk mengkonversi bilangan biner ke bilangan oktal, lakukan pengelompokan 3 digit bilangan biner dari posisi LSB sampai ke MSB

15 Contoh: konversikan ke bilangan oktal Contoh: konversikan ke bilangan oktal Jawab : Jawab : Jadi = Jadi = 263 8

16 Trima kasih


Download ppt "Bahasa Assembly Konversi Bilangan Pertemuan ke-2 Ema Maliachi,S.kom."

Presentasi serupa


Iklan oleh Google