Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Mengenal Sifat Material (2) oleh: Sudaryatno Sudirham Open Course.

Presentasi serupa


Presentasi berjudul: "Mengenal Sifat Material (2) oleh: Sudaryatno Sudirham Open Course."— Transcript presentasi:

1

2 Mengenal Sifat Material (2) oleh: Sudaryatno Sudirham Open Course

3  Struktur Kristal dan Nonkristal  Teori Pita Energi dan Teori Zona  Sifat Listrik Metal  Sifat Listrik Dielektrik  Sifat Thermal Material Cakupan Bahasan

4

5 Struktur Kristal

6 Kristal Kristal merupakan susunan atom-atom yang teratur dalam ruang tiga dimensi. Keteraturan susunan tersebut timbul karena kondisi geometris yang dihasilkan oleh ikatan atom yang terarah dan paking yang rapat. Sesungguhnya tidaklah mudah untuk menyatakan bagaimana atom tersusun dalam padatan. Namun ada hal-hal yang diharapkan menjadi faktor penting yang menentukan terbentuknya polihedra koordinasi atom-atom. Secara ideal, susunan polihdra koordinasi paling stabil adalah yang memungkinkan terjadinya energi per satuan volume minimal. Keadaan tersebut dicapai jika: 1.kenetralan listrik terpenuhi 2.ikatan kovalen yang diskrit dan terarah terpenuhi 3.meminimalkan gaya tolak ion-ion 4.paking atom serapat mungkin

7 Struktur kristal yang biasa teramati pada padatan dinyatakan dalam konsep geometris ideal yang disebut kisi-kisi ruang (space lattice) dan menyatakan cara bagaimana polihedra koordinasi atom-atom tersusun bersama agar energi dalam padatan menjadi minimal. Kisi-kisi ruang adalah susunan tiga dimensi titik-titik di mana setiap titik memiliki lingkungan yang serupa. Titik dengan lingkungan yang serupa itu disebut titik kisi (Lattice Point). Titik kisi dapat disusun hanya dalam 14 susunan yang berbeda yang disebut kisi-kisi Bravais; oleh karena itu atom-atom dalam kristal haruslah tersusun dalam salah satu dari 14 kemungkinan tersebut. Kristal

8 Sel Satuan pada Kisi-Kisi Ruang BRAVAIS [2,5] Kristal

9 Setiap titik kisi dapat ditempati oleh satu atau lebih atom, tetapi atom atau kelompok atom pada satu titik kisi haruslah identik dengan orientasi yang sama agar memenuhi definisi kisi ruang. Susunan atom dapat disebutkan secara lengkap dengan menyatakan posisi atom dalam suatu unit yang secara berulang tersusun dalam kisi ruang. Unit yang berulang itu disebut sel satuan. Rusuk sel satuan, yaitu vektor yang menghubungkan dua titik kisi, haruslah merupakan translasi kisi, dan sel satuan yang identik akan membentuk kisi- kisi ruang jika mereka disusun bidang sisi ke bidang sisi. Satu kisi-kisi ruang dapat memiliki beberapa sel satuan berbeda yang memenuhi kriteria tersebut di atas, akan tetapi biasanya sel satuan dipilih yang memiliki geometri sederhana dan memuat beberapa titik kisi saja. Satu sel satuan yang memiliki titik kisi hanya pada sudut-sudutnya, atau dengan kata lain satu unit sel yang memuat hanya satu titik kisi, disebut sel primitif. Kristal

10 Unsur Metal dan Unsur Mulia 3 sel satuan yang paling banyak dijumpai pada unsur ini adalah: Bulatan menunjukkan posisi atom yang juga merupakan lattice points pada FCC dan BCC Posisi atom yang ada dalam sel bukan lattice points [2] Kristal

11 Unsur ini biasanya memiliki ikatan kovalen sehingga kristal yang terbentuk akan mengikuti ketentuan ikatan ini. Jika orbital yang tak terisi digunakan seluruhnya untuk membentuk ikatan, maka atom ini akan berikatan dengan (8 – N) atom lain, dimana N adalah jumlah elektron valensi yang dimilikinya. Elemen Cl, Br, J, kulit terluarnya memuat 7 elektron; oleh karena itu pada umumnya mereka berikatan dengan hanya 1 atom dari elemen yang sama membentuk molekul diatomik, Cl 2, Br 2, J 2. Molekul diatomik tersebut membangun ikatan dengan molekul yang lain melalui ikatan sekunder yang lemah, membentuk kristal. Unsur Dengan Lebih Dari 3 Elektron Valensi [2] Kristal

12 Atom Group VI (S, Se, Te) memiliki 6 elektron di kulit terluarnya dan membentuk molekul rantai atao cincin di mana setiap atom berikatan dengan dua atom (dengan sudut ikatan tertentu). Molekul ini berikatan satu sama lain dengan ikatan sekunder yang lemah membentuk kristal. Rantai spiral atom Te bergabung dengan rantai yang lain membentuk kristal hexagonal. [2] Atom Group VI (S, Se, Te) Kristal

13 Atom Group V (P, As, Sb, Bi) memiliki 5 elektron di kulit terluarnya dan setiap atom berikatan dengan tiga atom (dengan sudut ikatan tertentu). [2] Atom Group V (P, As, Sb, Bi) Kristal

14 Kristal Ionik Walau sangat jarang ditemui kristal yang 100% ionik, namun beberapa kristal memiliki ikatan ionik yang sangat dominan sehingga dapat disebut sebagai kristal ionik. Contoh: NaCl, MgO, SiO 2, LiF. Dalam kristal ionik murni, polihedra anion (polihedra koordinasi) tersusun sedemikian rupa sehingga kenetralan listrik terpenuhi dan energi ikat per satuan volume menjadi minimum tanpa menyebabkan menguatnya gaya tolak antar muatan yang bersamaan tanda. Gaya tolak yang terbesar terjadi antar kation karena muatan listriknya terkonsentrasi dalam volume yang kecil, oleh karena itu polihedra koordinasi harus tersusun sedemikian rupa sehingga kation saling berjauhan. Kristal

15 Contoh struktur kristal ionik Anion Kation tetrahedron oktahedron Kristal

16 Kristal Molekul Jika dua atom terikat dengan ikatan primer, baik berupa ikatan ion ataupun ikatan kovalen, maka mereka dapat membentuk molekul yang diskrit. Jika ikatan primer tersebut kuat dalam satu sub-unit, maka ikatan yang terjadi antar sub-unit akan berupa bentuk ikatan yang berbeda dari ikatan primer. Kristal yang terbentuk adalah kristal molekuler dengan ikatan antar sub-unit yang lemah. Jika ikatan primernya adalah ikatan ion, molekul yang diskrit terbentuk jika muatan kation sama dengan hasilkali muatan anion dengan bilangan koordinasi. Contoh: sub-unit SiF 4 terbentuk dengan ikatan ion, polihedra koordinasi atau polihedra anion berbentuk tetrahedra F mengelilingi kation Si yang kemudian tersusun dalam kisi-kisi BCC Kristal

17 Pada es (H 2 O), ikatan primernya adalah ikatan kovalen dan ikatan sekunder antar sub-unit adalah ikatan ionik yang lemah Hidrogen hanya akan membentuk satu ikatan kovalen. Oleh karena itu molekul air terdiri dari 1 atom oksigen dengan 2 ikatan kovalen yang dipenuhi oleh 2 atom hidrogen dengan sudut antara dua atom hidrogen adalah 105 o. Dalam bentuk kristal, atom-atom hidrogen mengikat molekul-molekul air dengan ikatan ionik atau ikatan dipole hidrogen. Bola-bola menunjukkan posisi atom O; atom H terletak pada garis yang menghubungkan atom O yang berdekatan; ada 2 atom H setiap satu atom O. Kristal

18 Jika molekul membentuk rantaian panjang dengan penampang melintang yang mendekati simetris, mereka biasanya mengkristal dalam kisi-kisi berbentuk orthorhombic atau monoclinic. Molekul polyethylene dilihat dari depan Kristal

19 Kebanyakan polimer yang terbentuk lebih dari dua macam atom, memiliki ketidak-teraturan yang membuat ia tidak mengkristal. Walaupun demikian ada yang memiliki penampang simetris dan mudah mengkristal, seperti polytetrafluoroethylene (Teflon). Molekul polytetrafluoroethylene Polimer yang komplekspun masih mungkin memiliki struktur yang simetris dan dapat mengkristal seperti halnya cellulose. Kristal

20 Ketidaksempurnaan Pada Kristal Kristal

21 ketidaksempurnaan Schottky ketidaksempurnaan Frenkel pengotoran interstitial kekosongan kation pengotoran substitusi

22 Selain ketidak sempurnaan tersebut, yang disebut sebagai ketidak sempurnaan titik, dapat terjadi pula ketidaksempurnaan garis dan juga ketidaksempurnaan bidang. Tugas Bibliografis tentang Ketidak Sempurnaan Kristal Kristal

23

24 Teori Pita Energi

25 h = 6,63  joule-sec bilangan gelombang: energi kinetik elektron sbg gelombang : momentum: Planck : energi photon (partikel) bilangan bulat frekuensi gelombang cahaya De Broglie : Elektron sbg gelombang Teori Pita Energi Ulas Ulang Kuantisasi Energi

26 E k Energi elektron sebagai fungsi k (bilangan gelombang) Teori Pita Energi

27 Makin tinggi nomer atom, atom akan makin kompleks, tingkat energi yang terisi makin banyak. Teori Pita Energi

28 s p d f  5, SodiumHidrogen E [ eV ] 0 11 22 33 44 55 66 Kemungkinan terjadinya transisi elektron dari satu tingkat ke tingkat yang lain semakin banyak Teori Pita Energi [6]

29 Molekul lebih kompleks dari atom; tingkat-tingkat energi lebih banyak karena energi potensial elektron yang bergerak dalam medan yang diberikan oleh banyak inti atom tidaklah sederhana. Lebih dari itu, energi vibrasi dan rotasi atom secara relatif satu terhadap lainnya juga terkuantisasi seperti halnya terkuantisasinya energi elektron pada atom. Transisi dari satu tingkat ketingkat yang lain semakin banyak kemungkinannya, sehingga garis-garis spektrum dari molekul semakin rapat dan membentuk pita. Timbullah pengertian pita energi yang merupakan kumpulan tingkat energi yang sangat rapat. Molekul Teori Pita Energi

30 Penggabungan 2 atom H  H 2 0 22 4 E [ eV ] Å stabil tak stabil R0R0 jarak antar atom Pada penggabungan dua atom, tingkat energi dengan bilangan kuantum tertinggi akan terpecah lebih dulu Elektron yang berada di tingkat energi terluar disebut elektron valensi; elektron valensi berpartisipasi dalam pembentukan ikatan atom. Elektron yang berada pada tingkat energi yang lebih dalam (lebih rendah) disebut elektron inti; Teori Pita Energi

31 Gambaran tentang terbentuknya molekul dapat diperluas untuk sejumlah atom yang besar yang tersusun secara teratur, yaitu kristal padatan. n = 1 n = 2 n = 3 Jarak antar atom Energi Padatan Dalam penggabungan N atom identik, setiap tingkat energi terpecah menjadi N tingkat dan setiap tingkat akan mengakomodasi sepasang elekron dengan spin yang berlawanan ( m s = ± ½ ). Teori Pita Energi

32 051015Å  10  20  30 0 E [ eV ] sodium 2p2p R 0 = 3,67 Å 3s3s 3p3p 4s4s 3d3d Teori Pita Energi [6]

33 Cara penempatan elektron pada tingkat-tingkat energi mengikuti urutan sederhana: tingkat energi yang paling rendah akan terisi lebih dulu, menyusul tingkat di atasnya, dan seterusnya. E F, tingkat energi tertinggi yang terisi disebut tingkat Fermi, atau energi Fermi. Pada 0 o K semua tingkat energi sampai ke tingkat E F terisi penuh, dan semua tingkat energi di atas E F kosong. Pada temperatur yang lebih tinggi, beberapa tingkat energi di bawah E F kosong karena elektron mendapat tambahan energi untuk naik ke tingkat di atas E F. Teori Pita Energi

34 Elektron valensi yang berada pada tingkat energi Fermi ataupun di atas energi Fermi, berada pada salah satu tingkat energi yang dimiliki oleh kristal. Jumlah tingkat energi yang dimiliki oleh kristal sangat banyak dan sangat rapat sehingga hampir merupakan perubahan yang kontinyu. Oleh karena itu, elektron pada tingkat energi Fermi yang bergerak dalam kristal dapat dipandang sebagai elektron bebas. Elektron yang bergerak dengan kecepatan tertentu memiliki energi kinetik dan bilangan gelombang, k, tertentu. Gerakan elektron tersebut mengalami hambatan karena ada celah energi. Teori Pita Energi

35 Model Zona

36 Elektron sebagai gelombang mengikuti hukum defraksi Bragg. Ada satu seri nilai k yang membuat elektron terdefraksi sehingga tidak dapat melewati kristal secara bebas. Untuk elektron dalam kristal, seri nilai k ini terkait dengan celah energi. Nilai k dari defraksi Bragg memberikan dua set gelombang diam (standing wave) dengan nilai energi yang berbeda; selisih antara keduanya adalah lebar celah energi. d = jarak antar bidang kristal; θ = sudut datang; n = bilangan bulat. Model Zona Adanya celah energi membuat energi elektron tidak lagi merupakan fungsi kontinyu dari k 2.

37 Model elektron bebas yang memberikan energi sebagai fungsi kontinyu dari k 2 harus dimodifikasi dengan memutus fungsi kontinyu tersebut dengan celah energi pada nilai k yang memberikan defraksi Bragg. k E Celah energi k2k2 +k2+k2 k1k1 +k1+k1 Model Zona

38 Zona BRILLOUIN Zona Brillouin adalah representasi tiga dimensi dari nilai k yang diperkenankan Celah energi zone pertama zone kedua Satu Dimensi: k E k2k2 +k2+k2 k1k1 +k1+k1 Model Zona

39 k E k2k2 +k2+k2 k1k1 +k1+k1 k tergantung dari arah relatif gerak elektron terhadap kristal a = jarak antar atom Model Zona

40 Dua Dimensi:  π/a π/a  2π/a 2π/a + π/a + 2π/a+ 2π/a  π/a π/a + 2π/a+ 2π/a  2π/a 2π/a Zona pertama Zona kedua kxkx kyky Model Zona [6]

41 Tiga Dimensi: Zone kedua terdiri dari piramida dengan tinggi π/ a dan dasar 2 π/ a terletak di permukaan kubus dari zone pertama kxkx kzkz kyky +π/a+π/a π/aπ/a +π/a+π/a π/aπ/a +π/a+π/a π/aπ/a Zone pertama kristal kubik Model Zona [6]

42 Pada metal dengan kirstal BCC dan FCC, setiap zona memuat jumlah status kuantum sama dengan jumlah atom yang membentuknya Untuk kristal dengan N atom, ada N status di zona pertama Karena setiap tingkat energi berisi 2 elektron, maka pada kristal monovalen ada N/2 status kuantum terendah yang terisi; zona pertama hanya terisi setengahnya. Di samping mengetahui jumlah status di tiap zona, perlu diketahui juga jumlah status kuantum untuk setiap energi; yaitu degenerasi sebagai fungsi energi. Model Zona

43

44 Berdasarkan sifat fisik dan mekanik, Seitz mengidentifikasi zat padat sebagai berikut: Metal : memiliki koefisien temperatur resistivitas positif, konduktivitas listrik dan thermal tinggi, bisa dibentuk secara plastis. Kristal ionik : konduktivitas listrik dan thermal rendah, tidak plastis. (NaCL) Kristal kovalen : keras, konduktivitas listrik dan thermal rendah. (Intan). Semikonduktor : ikatan kovalen, konduktivitas listrik rendah, koefisien temperatur negatif. Berdasarkan konduktivitas listriknya kita membedakan material sebagai konduktor semikonduktor dielektrik Material dengan ikatan van der Waals.

45 Material  e [siemens] Perak 6,3  10 7 Tembaga 5,85  10 7 Emas 4,25  10 7 Aluminium 3,5  10 7 Tungsten 1,82  10 7 Kuningan 1,56  10 7 Besi 1,07  10 7 Nickel 1,03  10 7 Baja 0,7  10 7 Stainless steel 0,14  10 7 Material  e [siemens] Gelas (kaca) 2  3  10  5 Bakelit 1  2  10  11 Gelas (borosilikat) 10  10  10  15 Mika 10  11  10  15 Polyethylene 10  15  10  17 Konduktor Isolator Konduktor [6]

46 Model Klasik Sederhana

47 Jika pada suatu material konduktor terjadi perbedaan potensial, arus listrik akan mengalir melalui konduktor tersebut kerapatan arus [ampere/meter 2] kuat medan [volt/meter] resistivitas [  m] konduktivitas [siemens] Konduktor - Model Klasik Sederhana

48 Medan listrik E memberikan gaya dan percepatan pada elektron sebesar Karena elektron tidak terakselerasi secara tak berhingga, maka dapat dibayangkan bahwa dalam pergerakannya ia harus kehilangan energi pada waktu menabrak materi pengotor ataupun kerusakan struktur pada zat padat. Jika setiap tabrakan membuat elektron kembali berkecepatan nol, dan waktu antara dua tabrakan berturutan adalah 2  maka kecepatan rata-rata adalah: Konduktor - Model Klasik Sederhana

49 0 22 44 66 kecepatan waktu kerapatan elektron bebas benturan Jika tak ada medan listrik, elektron bebas bergerak cepat pada arah yang acak sehingga tak ada aliran elektron netto. Medan listrik akan membuat elektron bergerak pada arah yang sama. kerapatan arus Konduktor - Model Klasik Sederhana

50 Teori Drude-Lorentz Tentang Metal

51 1900: Drude mengusulkan bahwa konduktivitas listrik tinggi pada metal dapat dijelaskan sebagai kontribusi dari elektron valensi yang dianggap dapat bergerak bebas dalam metal, seperti halnya molekul gas bergerak bebas dalam suatu wadah. Gagasan Drude ini dikembangkan lebih lanjut oleh Lorentz. Elektron dapat bergerak bebas dalam kristal metal pada potensial internal yang konstan. Ada dinding potensial pada permukaan metal, yang menyebabkan elektron tidak dapat meninggalkan metal. Semua elektron bebas berperilaku seperti molekul gas (mengikuti statistik Maxwell-Boltzmann); elektron ini memiliki distribusi energi yang kontinyu. Gerakan elektron hanya dibatasi oleh tabrakan dengan ion-ion metal. Konduktor - Teori Drude-Lorentz Tentang Metal [1]

52 Medan listrik E memberikan gaya dan percepatan pada elektron sebesar Integrasi a terhadap waktu memberikan kecepatan elektron, yang disebut kecepatan drift : Konduktor - Teori Drude-Lorentz Tentang Metal [1]

53 Jika jalan bebas rata-rata elektron adalah L maka waktu rata-rata antara tabrakan dengan tabrakan berikutnya adalah Kecepatan drift ini berubah dari 0 sampai v drift maks, yaitu kecepatan sesaat sebelum tabrakan dengan ion metal. kecepatan thermal Kecepatan drift rata-rata dapat didekati dengan: Konduktor - Teori Drude-Lorentz Tentang Metal [1]

54 Kerapatan arus adalah: Konduktor - Teori Drude-Lorentz Tentang Metal [1]

55 Model Pita Energi untuk Metal

56 Jika banyak atom bergabung menjadi padatan, tingkat valensi terluar dari setiap atom cenderung akan terpecah membentuk pita energi. Tingkat- tingkat energi yang lebih dalam, yang disebut tingkat inti, tidak terpecah. Setiap tingkat valensi dari dari suatu padatan yang terdiri dari N atom berbentuk pita valensi yang terdiri dari N tingkat energi. Dengan demikian maka tingkat valensi s yang di tiap atom memuat 2 elektron, akan menjadi pita s yang dapat menampung 2N elektron. Tingkat valensi p yang di tiap atom memuat 6 elektron, akan menjadi pita p yang dapat menampung 6N elektron. Gambaran pita-pita energi pada suatu padatan: pita s pita p celah energi Konduktor - Model Pita Energi

57 Pada metal, pita valensi biasanya hanya sebagian terisi Pita energi paling luar, jika ia hanya sebagian terisi dan padanya terdapat tingkat Fermi, disebut sebagai pita konduksi. kosong celah energi terisi kosong pita valensi EFEF pita konduksi Sodium Konduktor - Model Pita Energi

58 Pada beberapa metal, pita valensi terisi penuh. Akan tetapi pita ini overlap dengan pita di atanya yang kosong. Pita yang kosong ini memfasilitasi tingkat energi yang dengan mudah dicapai oleh elektron yang semula berada di pita valensi. terisi penuh kosong EFEF pita valensi Magnesium Konduktor - Model Pita Energi

59 Pada beberapa material, pita valensi terisi penuh dan pita valensi ini tidak overlap dengan pita di atasnya yang kosong. Jadi antara pita valensi dan pita di atasnya terdapat celah energi. celah energi terisi penuh kosong pita valensi Intan celah energi terisi penuh kosong Silikon isolatorsemikonduktor Konduktor - Model Pita Energi

60 Model Mekanika Gelombang

61 Dalam model mekanika gelombang, elektron dipandang sebagai paket gelombang, bukan partikel. Kecepatan grup dari paket gelombang adalah f = frekuensi DeBroglie k = bilangan gelombang Percepatan yang dialami elektron adalah Karena E = hf, maka: Konduktor - Model Mekanika Gelombang

62 Percepatan yang dialami elektron adalah Percepatan ini terjadi karena ada medan listrik E, yang memberikan gaya sebesar eE Gaya sebesar eE memberikan laju perubahan energi kinetik pada elektron bebas sebesar sehinggapercepatan elektron menjadi: Konduktor - Model Mekanika Gelombang

63 sehinggapercepatan elektron menjadi: Bandingkan dengan relasi klasik: Kita definisikan massa efektif elektron : Untuk elektron bebas m* = m e. Untuk elektron dalam kristal m* tergantung dari energinya. Konduktor - Model Mekanika Gelombang

64 k E k1k1 +k1+k1 celah energi sifat klasik m* = m e jika energinya tidak mendekati batas pita energi dan kurva E terhadap k berbentuk parabolik Pada kebanyakan metal m* = m e karena pita energi tidak terisi penuh. Pada material yang pita valensinya terisi penuh m*  m e Konduktor - Model Mekanika Gelombang

65 Teori Sommerfeld Tentang Metal

66 Metal dilihat sebagai benda padat yang kontinyu, homogen, isotropik. Gambaran tentang elektron seperti pada teori Drude-Lorentz; elektron bebasa berada pada potensial internal yang konstan. Perbedaannya adalah bahwa elektron dalam sumur potensial mengikuti teori kuantum dan bukan mekanika klasik Berapa statuskah yang tersedia untuk elektron atau dengan kata lain bagaimanakah kerapatan status? Bagaimana elektron terdistribusi dalam status yang tersedia dan bagaimana mereka berpartisipasi dalam proses fisika? Kita lihat lagi Persamaan Schrödinger Konduktor - Teori Sommerfeld Tentang Metal [1]

67 x z y LxLx LyLy LzLz Sumur tiga dimensi Aplikasi Persamaan Schrödinger: Kasus 3 Dimensi Konduktor - Teori Sommerfeld Tentang Metal [1]

68 x z y LxLx LyLy LzLz Sumur tiga dimensi Aplikasi Persamaan Schrödinger; Kasus 3 Dimensi Konduktor - Teori Sommerfeld Tentang Metal [1]

69 Energi elektron : Energi elektron dinyatakan dalam momentumnya: sehingga : momentum : Konduktor - Teori Sommerfeld Tentang Metal [1]

70 momentum :Tanda ± menunjukkan bahwa arah momentum bisa positif atau negatif. Pernyataan ini menunjukkan bahwa momentum terkuantisasi. p x, p y, p z membentuk ruang momentum tiga dimensi. Jika ruang momentum berbentuk kubus, maka satuan sisi kubus adalah h/2L Kwadran pertama ruang momentum (dua dimensi): pxpx pypy 0 setiap titik menunjukkan status momentum yang diperkenankan setiap status momentum menempati ruang sebesar h 2 /4L 2 (kasus 2 dimensi). Konduktor - Teori Sommerfeld Tentang Metal [1]

71 Kwadran pertama ruang momentum (dua dimensi) pxpx pypy 0pxpx pypy 0 p dp setiap status momentum menempati ruang sebesar h 2 /4L 2 tiga dimensi Konduktor - Teori Sommerfeld Tentang Metal [1]

72 pxpx pypy 0 p dp tiga dimensi Karena maka massa elektron di sini adalah massa efektif Inilah kerapatan status. Setiap status mencakup 2 spin Berapakah yang terisi? Konduktor - Teori Sommerfeld Tentang Metal [1]

73 Tingkat Energi FERMI

74 Densitas Status pada 0 K Status energi diisi oleh elektron valensi mulai dari tingkat terendah secra berurut ke tingkat yang lebih tinggi sampai seluruh elektron terakomodasi. Elektron pada status energi yang paling tinggi analog dengan elektron pada tingkat energi paling tinggi di sumur potensial. Elektron ini memerlukan tambahan energi sebesar work function untuk meninggalkan sumur potensial. Status energi paling tinggi, yaitu tingkat yang paling tinggi yang ditempati oleh elektron pada 0 K secara tentatif didefinsikan sebagai tingkat Fermi, E F. (Definisi ini sesungguhnya tidak lengkap, tetapi untuk sementara kita gunakan). Konduktor - Tingkat Energi FERMI

75 pxpx pypy 0 p dp Jika p adalah jarak dari titik pusat ke momentum paling luar, maka akan diperoleh status yang terisi. Status yang terisi adalah: Karena Energi Fermi: Konduktor - Tingkat Energi FERMI

76 N(E)N(E) E EFEF  E 1/2 Densitas & Status terisi pada 0 K Densitas Status pada 0 K Jumlah status yang terisi dihitung dari jumlah status momentum yang terisi dalam ruang momentum: Konduktor - Tingkat Energi FERMI

77 Jika elektron pada tingkat energi E F kita pandang secara klasik, relasi energi: Pada tingkat energi E F sekitar 4 eV, sedang di mana T F adalah temperatur Fermi maka Jadi suatu elektron klasik berada pada sekitar K untuk setara dengan elektron pada tingkat Fermi. Konduktor - Tingkat Energi FERMI

78 Hasil Perhitungan elemen E F [eV] T F [ o K  ] Li4,75,5 Na3,13,7 K2,12,4 Rb1,82,1 Cs1,51,8 Cu7,08,2 Ag5,56,4 Au5,56,4 [1] Konduktor - Tingkat Energi FERMI [1]

79 Resistivitas

80 Menurut mekanika gelombang elektron bebas dalam kristal dapat bergerak tanpa kehilangan energi. Setiap kelainan pada struktur kristal akan menimbulkan hambatan pada gerakan elektron yang menyebabkan timbulnya resistansi listrik pada material. Bahkan pada 0 o K, adanya resistansi dapat teramati pada material nyata sebab pengotoran, dislokasi, kekosongan, dan berbagai ketidaksempurnaan kristal hadir dalam material. Pada metal murni, resistivitas total merupakan jumlah dari dua komponen yaitu komponen thermal  T, yang timbul akibat vibrasi kisi-kisi kristal, dan resistivitas residu  r yang disebabkan adanya pengotoran dan ketidaksempurnaan kristal. Relasi Matthiessen: resistivitas total resistivitas thermal resistivitas residu konduktivitas Konduktor - Resistivitas

81 Eksperimen menunjukkan: o K 100 | |       Cu Cu, 1,12% Ni Cu, 2,16% Ni Cu, 3.32% Ni  [ohm-m]  Di atas temperatur Debye komponen thermal dari resistivitas hampir linier terhadap temperatur: frekuensi maks osilasi Temperatur Debye: konstanta Boltzmann 1,38  10  23 joule/ o K kecepatan rambat suara panjang gelombang minimum osilator [6] Konduktor - Resistivitas

82 o K 100 | |       Cu Cu, 1,12% Ni Cu, 2,16% Ni Cu, 3.32% Ni  [ohm-m]  konstanta tergantung dai jenis metal dan pengotoran konsentrasi pengotoran Relasi Nordheim: Jika x << 1 2%3% 1% | |      r /  273 0,05 0,10 0,15 0,20 4% | In dalam Sn [6] Konduktor - Resistivitas

83 Pengaruh Jenis Pengotoran pada Cu   | ||| 2,0  10  8 2,5  10  8 1,5  10  8  [ohm-meter] 00,050,100,150,20  T (293) Sn Ag Cr Fe P % berat [6] Konduktor - Resistivitas

84 Emisi Elektron

85 Elektron bebas dalam metal tidak meninggalkan metal, kecuali jika mendapat tambahan energi yang cukup x EFEF Energi Hampa eFeF Emisi Elektron

86 emitter collector cahaya A V Sumber tegangan variabel I V V0V0 x lumen 2x lumen 3x lumen 0 Pada tegangan ini semua elektron kembali ke katoda (emitter) Laju keluarnya elektron (arus) tergantung dari intensitas cahaya tetapi energi kinetiknya tidak tergantung intensitas cahaya Energi kinetik elektron = e V 0 Peristiwa photolistrik Emisi Elektron - photolistrik

87 emitter collector cahaya A V Sumber tegangan variabel I V  V 01 =5000Å (biru)  V 02  V 03 =5500Å (hijau) =6500Å (merah) Intensitas cahaya konstan tetapi panjang gelombang berubah Emisi Elektron - photolistrik

88 emitter collector cahaya A V Sumber tegangan variabel Photon dengan energi hf diserap elektron di permukaan metal sehingga elektron tersebut mendapat tambahan energi. Jika pada awalnya elektron menempati tingkat energi tertinggi di pita konduksi dan bergerak tegak lurus ke arah permukaan, ia akan meninggalkan emitter dengan energi kinetik maksimum E k maks = hf  e  Energi yang diterima Energi untuk mengatasi hambatan di permukaan (dinding potensial) Emisi Elektron - photolistrik

89 emitter collector cahaya A V Sumber tegangan variabel tingkat energi terisi hf EFEF ee E k maks E k < E k maks hf Emisi Elektron - photolistrik

90 emitter collector cahaya A V Sumber tegangan variabel Jika V 0 (yang menunjukkan energi kinetik) di-plot terhadap frekuensi: VoVo f  1  2 Slope = h/e Metal 1 Metal 2 Rumus Einstein: Emisi Elektron - photolistrik

91 Peristiwa Emisi Thermal Pada temperatur tinggi, sebagian elektron memiliki energi kinetik yang lebih tinggi dari energi rata-rata elektron sehingga dapat melampaui work function ( e  ). A V vakum pemanas katoda anoda Jika arus cukup tinggi, terjadi saling tolak antara elektron di ruangan sehingga elektron dengan energi rendah tidak mencapai anoda. Muatan ruang makin berpengaruh jika arus makin tinggi. Arus akan mencapai kejenuhan. I V VV Emisi Elektron – emisi thermal

92 Makin tinggi temperatur katoda, akan makin tinggi energi elektron yang keluar dari permukaan katoda, dan kejenuhan terjadi pada nilai arus yang lebih tinggi. A V vakum pemanas katoda anoda I V VV T1T1 T2T2 T3T3 Kejenuhan dapat diatasi dengan menaikkan V I T V1V1 V2V2 V3V3 Emisi Elektron – emisi thermal

93 Pada tegangan yang sangat tinggi, dimana efek muatan ruang teratasi secara total, semua elektron yang keluar dari katoda akan mencapai anoda. A V vakum pemanas katoda anoda Persamaan Richardson-Dushman kerapatan aruskonstanta dari material k = konstanta Boltzman = 1,38  10  23 joule/ o K I T V1V1 V2V2 V = ∞ Emisi Elektron – emisi thermal

94 Nilai  tergantung dari temperatur : A V vakum pemanas katoda anoda pada 0 o K koefisien temperatur pada kebanyakan metal murni Persamaan Richardson-Dushman menjadi: Emisi Elektron – emisi thermal

95 A V vakum pemanas katoda anoda Persamaan Richardson-Dushman ? Emisi Elektron – emisi thermal

96 Material katoda titik leleh [ O K] temp. kerja [ O K] work function [eV] A [10 6 amp/m 2 o K 2 W ,50,060 Ta ,10,4 – 0,6 Mo ,20,55 Th ,40,60 Ba ,50,60 Cs ,91,62 [6] Emisi Elektron – emisi thermal

97 Jika elektron dengan energi tinggi (yang disebut elektron primer) ditembakkan ke permukaan metal, elektron dapat keluar dari permukaan metal (yang disebut elektron sekunder). Energi kinetik elektron sekunder tidak harus tergantung dari energi kinetik elektron yang membentur permukaan. Efisiensi emisi sekunder dinyatakan sebagai rasio jumlah elektron sekunder, I s terhadap jumlah elektron primer yang membentur permukaan, I p. Rasio ini disebut secondary emission yield, , dan merupakan fungsi dari energi kinetik berkas elektron yang membentur permukaan. Jika energi kinetik berkas elektron yang membentur permukaan terlalu rendah hanya sedikit dihasilkan emisi sekunder. Emisi Elektron – emisi sekunder Peristiwa Emisi Sekunder

98 Jika energi kinetik berkas elektron yang membentur permukaan terlalu tinggi hanya sedikit juga dihasilkan emisi sekunder. Hal ini disebabkan karena elektron yang membentur permukaan metal sempat masuk (penetrasi) ke dalam metal sebelum terjadi benturan dengan elektron bebas dalam metal. Elektron bebas yang menerima tambahan energi mengalami tabrakan- tabrakan sebelum mencapai permukaan, dan mereka gagal keluar dari permukaan metal. Akibatnya adalah  sebagai fungsi dari energi berkas elektron, mempunyai nilai maksimum.  EkEk 0 0  maks E k maks Emisi Elektron – emisi sekunder

99 emitter  maks E k [eV] Al0,97300 Cu1,35600 Cs0,9400 Mo1,25375 Ni1,3550 W1,43700 gelas  2,5 400 BeO10,2500 Al 2 O 3 4,81300 [6] Emisi Elektron – emisi sekunder

100 Efek SCHOTTKY Dalam peristiwa emisi thermal telah disebutkan bahwa kenaikan medan listrik antara emitter dan anoda akan mengurangi efek muatan ruang. I V1V1 V2V2 V3V3 Medan yang tinggi juga meningkatkan emisi karena terjadi perubahan dinding potensial di permukaan katoda x EFEF Energi x0x0 e∅e∅ medan listrik tinggi V = eEx eΔ∅eΔ∅ Medan E memberikan potensial  eEx pada jarak x dari permukaan nilai maks dinding potensial penurunan work function Emisi Elektron – efek Schottky

101 Peristiwa Emisi Medan Hadirnya medan listrik pada permukaan katoda, selain menurunkan work function juga membuat dinding potensial menjadi lebih tipis x EFEF Energi e∅e∅ medan listrik sangat tinggi V = eEx eΔ∅eΔ∅ jarak tunneling penurunan work function Emisi Elektron – emisi medan

102

103 Karakteristik Dielektrik

104 Dielektrik digunakan pada kapasitor dan sebagai bahan isolasi Permitivitas relatif didefinisikan sebagai rasio permitivitas dielektrik (  ) dengan permitivitas ruang hampa (  0 ) Jika suatu dielektrik yang memiliki permitivitas relatif  r disisipkan antara dua pelat kapasitor yang memiliki luas A dan jarak antara kedua pelat adalah d, maka kapasitansi yang semula berubah menjadi dielektrik meningkatkan kapasitansi sebesar  r kali Faktor Desipasi Sifat Listrik Dielektrik - Karakteristik Dielektrik

105 Diagram fasor kapasitor im re I Rp ICIC I tot  VCVC Desipasi daya (menjadi panas): tan  : faktor desipasi (loss tangent)  r tan  : faktor kerugian (loss factor) Sifat Listrik Dielektrik - Karakteristik Dielektrik

106 Kekuatan Dielektrik Gradien tegangan maksimum yang masih dapat ditahan oleh dielektrik sebelum terjadi tembus listrik Nilai kekuatan dielektrik secara eksperimen sangat tergantung dari ukuran spesimen, elektroda, serta prosedur percobaan Tembus listrik diawali oleh hdirnya sejumlah elektron di pita konduksi. Elektron ini mendapat percepatan oleh adanya medan listrik yang tinggi sehingga memperoleh energi kinetik yang tinggi. Sebagian energi ini ditransfer ke elektron valensi sehingga elektron valensi naik ke pita konduksi. Jika jumlah elektron ini cukup banyak maka akan terjadi avalans elektron di pita konduksi. Arus meningkat dengan cepat sehingga terjadi peleburan lokal, terbakar, atau penguapan. Elektron awal bisa hadir oleh beberapa sebab: discharge antara elektroda tegangan tinggi dengan permukaan dielektrik yang terkontaminasi, pori- pori berisi gas dalam dielektrik, pengotoran oleh atom asing. Sifat Listrik Dielektrik - Karakteristik Dielektrik

107 Jarak elektroda [m] X 10  2 Tegangan tembus [kV] 100   300  400  500  600  ,13 2,54 udara 1 atm udara 400 psi SF psi SF 6 1 atm Porselain Minyak Trafo High Vacuum [6] Sifat Listrik Dielektrik - Karakteristik Dielektrik

108 Polarisasi

109 Tanpa dielektrik : E0E    d 00 ++ ++ d  E ++ ++ ++ ++ ++ ++        Dipole listrik : timbul karena terjadi Polarisasi Dengan dielektrik : Polarisasi : total dipole momen listrik per satuan volume Sifat Listrik Dielektrik - Polarisasi

110 Molekul di dalam dielektrik mengalami pengaruh medan listrik yang lebih besar dari medan listrik yang diberikan dari luar. Medan listrik yang dialami oleh molekul ini disebut medan lokal. ++ ++  E ++ ++ ++ ++ ++ ++        ++ ++ ++ ++ ++ ++ ++ ++ Induksi momen dipole oleh medan lokal E lok adalah polarisabilitas jumlah molekul per satuan volume Sifat Listrik Dielektrik - Polarisasi

111 4 macam polarisasi a. polarisasi elektronik : tak ada medan ada medan E Teramati pada semua dielektrik. Terjadi karena pergeseran awan elektron pada tiap atom terhadap intinya. Sifat Listrik Dielektrik - Polarisasi

112 4 macam polarisasi tak ada medan ada medan E b. polarisasi ionik : +     +     Terjadi karena pergeseran ion-ion yang berdekatan yang berlawanan muatan. Hanya ditemui pada material ionik. Sifat Listrik Dielektrik - Polarisasi

113 4 macam polarisasi tak ada medan ada medan E c. polarisasi orientasi : ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ Terjadi pada material padat dan cair yang memiliki molekul asimetris yang momen dipole permanennya dapat diarahkan oleh medan listrik. Sifat Listrik Dielektrik - Polarisasi

114 4 macam polarisasi tak ada medan ada medan E d. polarisasi muatan ruang :                 Terjadi pengumpulan muatan di perbatasan dielektrik. Sifat Listrik Dielektrik - Polarisasi

115  r Tergantung Pada Frekuensi Dan Temperatur

116 Dalam medan bolak-baik, polarisasi total P, polarisabilitas total , dan  r, tergantung dari kemudahan dipole untuk mengikuti medan yang selalu berubah arah tersebut. Dalam proses mengikuti arah medan tersebut, waktu yang dibutuhkan oleh dipole untuk mencapai orientasi keseimbangan disebut waktu relaksasi. Kebalikan dari waktu relaksasi disebut frekuensi relaksasi. Jika frekuensi dari medan yang diberikan melebihi frekuensi relaksasi, dipole tidak cukup cepat untuk mengikutinya, dan proses orientasi berhenti. Karena frekuensi relaksasi dari empat macam proses polarisasi berbeda-beda, maka kontribusi dari masing-masing proses pada polarisasi keseluruhan dapat diamati. Sifat Listrik Dielektrik -  r Tergantung Pada Frekuensi Dan Temperatur

117 frekuensi listrik frekuensi optik frekuensi power audio radio infra merah cahaya tampak P;rP;r absorbsi; loss factor muatan ruang orientasi ionik elektronik orientasi muatan ruang ionik elektronik  Sifat Listrik Dielektrik -  r Tergantung Pada Frekuensi Dan Temperatur

118 rr T titik leleh nitrobenzene[6] Sifat Listrik Dielektrik -  r Tergantung Pada Frekuensi Dan Temperatur

119 rr oCoC 5  10 2 cps 10 4 cps 8  10 2 cps 5  10  15  20  silica glass[6] Sifat Listrik Dielektrik -  r Tergantung Pada Frekuensi Dan Temperatur

120 Kehilangan Energi

121 tan  : faktor desipasi (loss tangent) im re Diagram fasor kapasitor I Rp ICIC I tot  VCVC Desipasi daya (menjadi panas):  r tan  : faktor kerugian (loss factor) Sifat Listrik Dielektrik - Kehilangan Energi

122 Sifat Ferroelectric Sifat Piezoelectric Tugas Bibliografis Dikumpulkan pada hari ……………… Jam : ………. Sifat Listrik Dielektrik

123

124 Sejumlah energi bisa ditambahkan ke dalam material melalui pemanasan, medan listrik, medan magnit, bahkan gelombang cahaya seperti pada peristwa photo listrik yang telah kita kenal. Pada penambahan energi melalui pemanasan tanggapan padatan termanifestasikan dalam gejala-gejala kenaikan temperatur sampai pada emisi thermal tergantung dari besar energi yang masuk. Dalam padatan, terdapat dua kemungkinan penyimpanan energi thermal: 1)penyimpanan dalam bentuk vibrasi atom / ion di sekitar posisi keseimbangannya 2)energi kinetik yang dikandung oleh elektron-bebas.

125 Sifat-sifat thermal yang akan kita bahas adalah kapasitas panas panas spesifik pemuaian konduktivitas panas

126 Kapasitas Panas

127 Kapasitas Panas (heat capacity) Kapasitas panas pada volume konstan, C v Kapasitas panas pada tekanan konstan, Cp E : energi internal padatan yaitu total energi yang ada dalam padatan baik dalam bentuk vibrasi atom maupun energi kinetik elektron-bebas T : temperatur H : enthalpi. Pengertian enthalpi dimunculkan dalam thermodinamika karena amat sulit meningkatkan kandungan energi internal pada tekanan konstan. energi yang kita masukkan tidak hanya meningkatkan energi internal melainkan juga untuk melakukan kerja pada waktu pemuaian terjadi.

128 Kapasitas Panas volume tekanan energi internal Jika perubahan volume terhadap T cukup kecil suku ini bisa diabaikan sehingga

129 Panas Spesifik

130 Panas Spesifik, Perhitungan klasik Kapasitas panas per satuan massa per derajat K dituliskan dengan huruf kecil c v dan c p Perhitungan Klasik Molekul gas ideal memiliki tiga derajat kebebasan energi kinetik rata-rata per derajat kebebasan energi kinetik rata-rata (3 dimensi): energi per mole Bilangan Avogadro Konstanta Boltzman Atom-atom padatan saling terikat energi rata-rata per derajat kebebasan cal/mole Menurut hukum Dulong-Petit (1820), c v Hampir sama untuk semua material yaitu 6 cal/mole K

131 Pada umumnya hukum Dulong-Petit cukup teliti untuk temperatur di atas temperatur kamar. Namun beberapa unsur memiliki panas spesifik pada temperatur kamar yang lebih rendah dari angka Dulong-Petit, misalnya Be ([He] 2s 2 ), B ([He] 2s 2 2p 1 ), C ([He] 2s 2 2p 2 ), Si ([Ne] 3s 2 3p 2 ) Panas Spesifik, Perhitungan klasik Unsur-unsur ini orbital terluarnya tersisi penuh atau membuat ikatan kovalen dengan unsur sesamanya. Oleh karena itu pada temperatur kamar hampir tidak terdapat elektron bebas dalam material ini. Lebih rendahnya kapasitas panas yang dimiliki material ini disebabkan oleh tidak adanya kontribusi elektron bebas dalam peningkatan energi internal.

132 Sebaliknya pada unsur-unsur yang sangat elektropositif seperti Na ([Ne] 3s 1 ) kapasitas panas pada temperatur tinggi melebihi prediksi Dulong-Petit karena adanya kontribusi elektron bebas dalam penyimpanan energi internal. Panas Spesifik, Perhitungan klasik

133 Panas Spesifik, Perhitungan Einstein Perhitungan Einstein Padatan terdiri dari N atom, yang masing-masing bervibrasi (osilator) secara bebas pada arah tiga dimensi, dengan frekuensi f E Frekuensi osilator Konstanta Planck bilangan kuantum, n = 0, 1, 2,.... Jika jumlah osilator tiap status energi adalah N n dan N 0 adalah jumlah asilator pada status 0, maka menuruti fungsi Boltzmann Jumlah energi per status: total energi dalam padatan: sehingga energi rata-rata osilator

134 energi rata-rata osilator Panas Spesifik, Perhitungan Einstein misalkan Karena turunan dari penyebut, maka dapat ditulis Dengan N atom yang masing-masing merupakan osilator bebas yang berosilasi tiga dimensi, maka didapatkan total energi internal

135 Panas Spesifik, Perhitungan Einstein Panas spesifik adalah f E : frekuensi Einstein ditentukan dengan cara mencocokkan kurva dengan data-data eksperimental. Hasil yang diperoleh adalah bahwa pada temperatur rendah kurva Einstein menuju nol jauh lebih cepat dari data eksperimen Ketidak cocokan ini dijelaskan oleh Debye

136 Panas Spesifik, Perhitungan Debye Perhitungan Debye Menurut Debye, penyimpangan hasil perhitungan Einstein disebabkan oleh asumsi yang diambil Einstein bahwa atom-atom bervibrasi secara bebas dengan frekuensi sama, f E Analisis yang perlu dilakukan adalah menentukan spektrum frekuensi g(f) dimana g(f)df didefinisikan sebagai jumlah frekuensi yang diizinkan yang terletak antara f dan (f + df) Debye melakukan penyederhanaan perhitungan dengan menganggap padatan sebagai medium merata yang bervibrasi dan mengambil pendekatan pada vibrasi atom sebagai spectrum-gelombang-berdiri sepanjang kristal kecepatan rambat suara dalam padatan Debye memandang padatan sebagai kumpulan phonon karena perambatan suara dalam padatan merupakan gejala gelombang elastis

137 Postulat Debye : ada frekuensi osilasi maksimum, f D, karena jumlah keseluruhan frekuensi yang diizinkan tidak akan melebihi 3N (N adalah jumlah atom yang bervibrasi tiga dimensi). Panjang gelombang minimum adalah tidak lebih kecil dari jarak antar atom dalam kristal Panas Spesifik, Perhitungan Debye Energi internal untuk satu mole volume kristal didefinisikan temperatur Debye

138 Panas Spesifik, Perhitungan Debye Didefinisikan fungsi Debye Fungsi Debye tidak dapat diintegrasi secara analitis, namun dapat dicari nilai-nilai limitnya jika Pada temperatur tinggi c v mendekati nilai yang diperoleh Einstein Pada temperatur rendah

139 Kontribusi Elektron Panas Spesifik – Kontribusi Elektron Hanya elektron di sekitar energi Fermi yang terpengaruh oleh kenaikan temperatur dan elektron-elektron inilah yang bisa berkontribusi pada panas spesifik Pada temperatur tinggi, elektron menerima energi thermal sekitar kBT dan berpindah pada tingkat energi yang lebih tinggi jika tingkat energi yang lebih tinggi kosong T > 0 T = 0 F(E)F(E) 0 E 1 kBTkBT 0 EFEF pada kebanyakan metal sekitar 5 eV pada temperatur kamar k B T sekitar 0,025 eV kurang dari 1% elektron valensi yang dapat berkontribusi pada panas spesifik kontribusi elektron dalam panas spesifik adalah

140 Panas Spesifik Total untuk temperatur rendah, dapat dituliskan atau T 2 ′′ slope = A cv/Tcv/T

141 Panas Spesifik Pada Tekanan Konstan, c p Panas Spesifik, Pada Tekanan Konstan dan Faktor Lain yang Turut Berperan Hubungan antara cp dan cv diberikan dalam thermodinamika volume molar koefisien muai volume kompresibilitas Faktor-Faktor Lain Yang Turut Berperan Pemasukan panas pada padatan tertentu dikuti proses-proses lain, misalnya: perubahan susunan molekul dalam alloy, pengacakan spin elektron dalam material magnetik, perubahan distribusi elektron dalam material superkonduktor, Proses-proses ini akan meningkatkan panas spesifik material yang bersangkutan

142 Pemuaian

143 Pada tekanan konstan Dengan menggunakan model Debye  : konstanta Gruneisen  : kompresibilitas

144 c p, α L, γ, untuk beberapa material.[6]. Materialc p (300 K) cal/g K α L (300 K) 1/K  10 6 γ (konst. Gruneisen) Al0,2224,12,17 Cu0,09217,61,96 Au0,03113,83,03 Fe0.1110,81,60 Pb0,3228,02,73 Ni0,1313,31.88 Pt0,0318,82,54 Ag0,05619,52,40 W0,0343,951,62 Sn0,5423,52,14 Tl0,0366,71,75 Pemuaian

145 Konduktivitas Panas

146 Jika q adalah jumlah kalori yang melewati satu satuan luas (A) per satuan waktu ke arah x maka Konduktivitas Panas aliran panas berjalan dari temperatur tinggi ke temperatur rendah Pada temperatur kamar, metal memiliki konduktivitas thermal yang baik dan konduktivitas listrik yang baik pula karena elektron-bebas berperan dalam berlangsungnya transfer panas Pada material dengan ikatan ion ataupun ikatan kovalen, di mana elektron kurang dapat bergerak bebas, transfer panas berlangsung melalui phonon Dalam polimer perpindahan panas terjadi melalui rotasi, vibrasi, dan translasi molekul

147 σ T untuk beberapa material pada 300 K.[6]. Materialσ T cal/(cm sec K) L=σ T /σ e T (volt/K) 2  10 8 Al0,532,2 Cu0,942,23 Fe0,192,47 Ag1,002,31 C (Intan)1,5- Ge0,14- Konduktivitas Panas Lorentz number

148 Konduktivitas Panas Oleh Elektron pengertian klasikgas ideal Jika L adalah jalan bebas rata-rata elektron, maka transmisi energi per elektron adalah Jumlah energi yang ter-transfer ke arah x kerapatan elektron kecepatan rata-rata Energi thermal yang ditransfer melalui dua bidang paralel tegak-lurus arah x dengan jarak  x pada perbedaan temperatur  T adalah

149 Rasio Wiedemann-Franz Rasio ini adalah rasio antara konduktivitas thermal dan konduktivitas listrik listrik Lorentz number hampir sama untuk kebanyakan metal

150 Isolator Panas Isolator thermal yang baik adalah material yang porous. Rendahnya konduktivitas thermal disebabkan oleh rendahnya konduktivitas udara yang terjebak dalam pori-pori Isolator Panas Namun penggunaan pada temperatur tinggi yang berkelanjutan cenderung terjadi pemadatan yang mengurangi kualitasnya sebagai isolator thermal Material polimer yang porous bisa mendekati kualitas ruang hampa pada temperatur sangat rendah; gas dalam pori yang membeku menyisakan ruang-ruang hampa yang bertindak sebagai isolator

151 Courseware Mengenal Sifat Material (2) Sudaryatno Sudirham


Download ppt "Mengenal Sifat Material (2) oleh: Sudaryatno Sudirham Open Course."

Presentasi serupa


Iklan oleh Google