Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Mengenal Sifat Material #4 Sifat-Sifat Thermal. Sifat-sifat thermal yang akan kita bahas adalah kapasitas panas panas spesifik pemuaian konduktivitas.

Presentasi serupa


Presentasi berjudul: "Mengenal Sifat Material #4 Sifat-Sifat Thermal. Sifat-sifat thermal yang akan kita bahas adalah kapasitas panas panas spesifik pemuaian konduktivitas."— Transcript presentasi:

1 Mengenal Sifat Material #4 Sifat-Sifat Thermal

2 Sifat-sifat thermal yang akan kita bahas adalah kapasitas panas panas spesifik pemuaian konduktivitas panas

3 Sejumlah energi bisa ditambahkan ke dalam material melalui pemanasan, medan listrik, medan magnit, bahkan gelombang cahaya seperti pada peristwa photo listrik yang telah kita kenal. Pada penambahan energi melalui pemanasan tanggapan padatan termanifestasikan dalam gejala-gejala kenaikan temperatur sampai pada emisi thermal tergantung dari besar energi yang masuk. Dalam padatan, terdapat dua kemungkinan penyimpanan energi thermal: 1)penyimpanan dalam bentuk vibrasi atom / ion di sekitar posisi keseimbangannya 2)energi kinetik yang dikandung oleh elektron-bebas.

4 Kapasitas Panas

5 Kapasitas Panas (heat capacity) Kapasitas panas pada volume konstan, C v Kapasitas panas pada tekanan konstan, Cp E : energi internal padatan yaitu total energi yang ada dalam padatan baik dalam bentuk vibrasi atom maupun energi kinetik elektron-bebas T : temperatur H : enthalpi. Pengertian enthalpi dimunculkan dalam thermodinamika karena amat sulit meningkatkan kandungan energi internal pada tekanan konstan. energi yang kita masukkan tidak hanya meningkatkan energi internal melainkan juga untuk melakukan kerja pada waktu pemuaian terjadi.

6 Kapasitas Panas volume tekanan energi internal Jika perubahan volume terhadap T cukup kecil suku ini bisa diabaikan sehingga

7 Panas Spesifik

8 Panas Spesifik, Perhitungan klasik Kapasitas panas per satuan massa per derajat K dituliskan dengan huruf kecil c v dan c p Perhitungan Klasik Molekul gas ideal memiliki tiga derajat kebebasan energi kinetik rata-rata per derajat kebebasan energi kinetik rata-rata (3 dimensi): energi per mole Bilangan Avogadro Konstanta Boltzman Atom-atom padatan saling terikat energi rata-rata per derajat kebebasan cal/mole Menurut hukum Dulong-Petit (1820), c v Hampir sama untuk semua material yaitu 6 cal/mole K

9 Pada umumnya hukum Dulong-Petit cukup teliti untuk temperatur di atas temperatur kamar. Namun beberapa unsur memiliki panas spesifik pada temperatur kamar yang lebih rendah dari angka Dulong-Petit, misalnya Be ([He] 2s 2 ), B ([He] 2s 2 2p 1 ), C ([He] 2s 2 2p 2 ), Si ([Ne] 3s 2 3p 2 ) Panas Spesifik, Perhitungan klasik Unsur-unsur ini orbital terluarnya tersisi penuh atau membuat ikatan kovalen dengan unsur sesamanya. Oleh karena itu pada temperatur kamar hampir tidak terdapat elektron bebas dalam material ini. Lebih rendahnya kapasitas panas yang dimiliki material ini disebabkan oleh tidak adanya kontribusi elektron bebas dalam peningkatan energi internal.

10 Sebaliknya pada unsur-unsur yang sangat elektropositif seperti Na ([Ne] 3s 1 ) kapasitas panas pada temperatur tinggi melebihi prediksi Dulong-Petit karena adanya kontribusi elektron bebas dalam penyimpanan energi internal. Panas Spesifik, Perhitungan klasik

11 Panas Spesifik, Perhitungan Einstein Perhitungan Einstein Padatan terdiri dari N atom, yang masing-masing bervibrasi (osilator) secara bebas pada arah tiga dimensi, dengan frekuensi f E Frekuensi osilator Konstanta Planck bilangan kuantum, n = 0, 1, 2,.... Jika jumlah osilator tiap status energi adalah N n dan N 0 adalah jumlah asilator pada status 0, maka menuruti fungsi Boltzmann Jumlah energi per status: total energi dalam padatan: sehingga energi rata-rata osilator

12 energi rata-rata osilator Panas Spesifik, Perhitungan Einstein misalkan Karena turunan dari penyebut, maka dapat ditulis Dengan N atom yang masing-masing merupakan osilator bebas yang berosilasi tiga dimensi, maka didapatkan total energi internal

13 Panas Spesifik, Perhitungan Einstein Panas spesifik adalah f E : frekuensi Einstein ditentukan dengan cara mencocokkan kurva dengan data-data eksperimental. Hasil yang diperoleh adalah bahwa pada temperatur rendah kurva Einstein menuju nol jauh lebih cepat dari data eksperimen Ketidak cocokan ini dijelaskan oleh Debye

14 Panas Spesifik, Perhitungan Debye Perhitungan Debye Menurut Debye, penyimpangan hasil perhitungan Einstein disebabkan oleh asumsi yang diambil Einstein bahwa atom-atom bervibrasi secara bebas dengan frekuensi sama, f E Analisis yang perlu dilakukan adalah menentukan spektrum frekuensi g(f) dimana g(f)df didefinisikan sebagai jumlah frekuensi yang diizinkan yang terletak antara f dan (f + df) Debye melakukan penyederhanaan perhitungan dengan menganggap padatan sebagai medium merata yang bervibrasi dan mengambil pendekatan pada vibrasi atom sebagai spectrum-gelombang-berdiri sepanjang kristal kecepatan rambat suara dalam padatan Debye memandang padatan sebagai kumpulan phonon karena perambatan suara dalam padatan merupakan gejala gelombang elastis

15 Postulat Debye : ada frekuensi osilasi maksimum, f D, karena jumlah keseluruhan frekuensi yang diizinkan tidak akan melebihi 3N (N adalah jumlah atom yang bervibrasi tiga dimensi). Panjang gelombang minimum adalah tidak lebih kecil dari jarak antar atom dalam kristal Panas Spesifik, Perhitungan Debye Energi internal untuk satu mole volume kristal didefinisikan temperatur Debye

16 Panas Spesifik, Perhitungan Debye Didefinisikan fungsi Debye Fungsi Debye tidak dapat diintegrasi secara analitis, namun dapat dicari nilai-nilai limitnya jika Pada temperatur tinggi c v mendekati nilai yang diperoleh Einstein Pada temperatur rendah

17 Kontribusi Elektron Panas Spesifik – Kontribusi Elektron Hanya elektron di sekitar energi Fermi yang terpengaruh oleh kenaikan temperatur dan elektron-elektron inilah yang bisa berkontribusi pada panas spesifik Pada temperatur tinggi, elektron menerima energi thermal sekitar k B T dan berpindah pada tingkat energi yang lebih tinggi jika tingkat energi yang lebih tinggi kosong T > 0 T = 0 F(E)F(E) 0 E 1 kBTkBT 0 EFEF pada kebanyakan metal sekitar 5 eV pada temperatur kamar k B T sekitar 0,025 eV kurang dari 1% elektron valensi yang dapat berkontribusi pada panas spesifik kontribusi elektron dalam panas spesifik adalah

18 Panas Spesifik Total untuk temperatur rendah, dapat dituliskan atau T 2 ′′ slope = A cv/Tcv/T

19 Panas Spesifik Pada Tekanan Konstan, c p Panas Spesifik, Pada Tekanan Konstan dan Faktor Lain yang Turut Berperan Hubungan antara c p dan c v diberikan dalam thermodinamika volume molar koefisien muai volume kompresibilitas Faktor-Faktor Lain Yang Turut Berperan Pemasukan panas pada padatan tertentu dikuti proses-proses lain, misalnya: perubahan susunan molekul dalam alloy, pengacakan spin elektron dalam material magnetik, perubahan distribusi elektron dalam material superkonduktor, Proses-proses ini akan meningkatkan panas spesifik material yang bersangkutan

20 Pemuaian

21 Pada tekanan konstan Dengan menggunakan model Debye  : konstanta Gruneisen  : kompresibilitas

22 c p, α L, γ, untuk beberapa material.[6]. Materialc p (300 K) cal/g K α L (300 K) 1/K  10 6 γ (konst. Gruneisen) Al0,2224,12,17 Cu0,09217,61,96 Au0,03113,83,03 Fe0.1110,81,60 Pb0,3228,02,73 Ni0,1313,31.88 Pt0,0318,82,54 Ag0,05619,52,40 W0,0343,951,62 Sn0,5423,52,14 Tl0,0366,71,75 Pemuaian

23 Konduktivitas Panas

24 Jika q adalah jumlah kalori yang melewati satu satuan luas (A) per satuan waktu ke arah x maka Konduktivitas Panas aliran panas berjalan dari temperatur tinggi ke temperatur rendah Pada temperatur kamar, metal memiliki konduktivitas thermal yang baik dan konduktivitas listrik yang baik pula karena elektron-bebas berperan dalam berlangsungnya transfer panas Pada material dengan ikatan ion ataupun ikatan kovalen, di mana elektron kurang dapat bergerak bebas, transfer panas berlangsung melalui phonon Dalam polimer perpindahan panas terjadi melalui rotasi, vibrasi, dan translasi molekul

25 σ T untuk beberapa material pada 300 K.[6]. Materialσ T cal/(cm sec K) L=σ T /σ e T (volt/K) 2  10 8 Al0,532,2 Cu0,942,23 Fe0,192,47 Ag1,002,31 C (Intan)1,5- Ge0,14- Konduktivitas Panas Lorentz number

26 Konduktivitas Panas Oleh Elektron pengertian klasikgas ideal Jika L adalah jalan bebas rata-rata elektron, maka transmisi energi per elektron adalah Jumlah energi yang ter-transfer ke arah x kerapatan elektron kecepatan rata-rata Energi thermal yang ditransfer melalui dua bidang paralel tegak-lurus arah x dengan jarak  x pada perbedaan temperatur  T adalah

27 Rasio Wiedemann-Franz Rasio ini adalah rasio antara konduktivitas thermal dan konduktivitas listrik listrik Lorentz number hampir sama untuk kebanyakan metal

28 Isolator Panas Isolator thermal yang baik adalah material yang porous. Rendahnya konduktivitas thermal disebabkan oleh rendahnya konduktivitas udara yang terjebak dalam pori-pori Isolator Panas Namun penggunaan pada temperatur tinggi yang berkelanjutan cenderung terjadi pemadatan yang mengurangi kualitasnya sebagai isolator thermal Material polimer yang porous bisa mendekati kualitas ruang hampa pada temperatur sangat rendah; gas dalam pori yang membeku menyisakan ruang-ruang hampa yang bertindak sebagai isolator

29 Courseware Mengenal Sifat Material #4 Sifat-Sifat Thermal Sudaryatno Sudirham


Download ppt "Mengenal Sifat Material #4 Sifat-Sifat Thermal. Sifat-sifat thermal yang akan kita bahas adalah kapasitas panas panas spesifik pemuaian konduktivitas."

Presentasi serupa


Iklan oleh Google