Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

2 Fungsi alihnya ditulis dalam bentuk rasio fungsi polinomial sistem orde n ( ) : Bentuk gain/konstanta waktu: Untuk sistem orde satu dan orde dua, karakteristik.

Presentasi serupa


Presentasi berjudul: "2 Fungsi alihnya ditulis dalam bentuk rasio fungsi polinomial sistem orde n ( ) : Bentuk gain/konstanta waktu: Untuk sistem orde satu dan orde dua, karakteristik."— Transcript presentasi:

1

2 2 Fungsi alihnya ditulis dalam bentuk rasio fungsi polinomial sistem orde n ( ) : Bentuk gain/konstanta waktu: Untuk sistem orde satu dan orde dua, karakteristik respon ditentukan oleh penyebut (denominator) fungsi alihnya. Proses Lebih Kompleks

3 3 Misalnya, fungsi alih yang berbentuk: Aplikasikan sinyal input U(s)=p(s)/q(s) pada sistem ini. Dengan menggunakan ekspansi fraksi parsial: Proses Lebih Kompleks

4 4 y(t) adalah jumlah dari: Konstanta yang dihasilkan dari faktor s dari Fungsi yang dihasilkan dari dalam bentuk: Sebuah forcing input Proses Lebih Kompleks

5 5 Persamaan Karakteristik q(s) Tanpa memperhatikan U(s), dinamik intrinsik dari proses ditentukan dari faktor polinomial penyebut q(s), akar-akar q(s). Penyebut polinomial q(s) disebut persamaan karakteristik. Akar-akar persamaan karakteristik disebut pole dari G(s) Proses Lebih Kompleks

6 6 Jika G(s) difaktorkan: Akar-akar q(s) disebut pole dari G(s) Akar-akar r(s) disebut zero dari G(s) Pole dan Zero

7 7 Pole dan zero dalam digambarkan pada bidang kompleks ‘s’ Pole pada Bidang Kompleks

8 8 Pole: berhubungan secara langsung dengan persamaan diferensial yang melandasinya Pole Nyata Jika sistem linear mempunyai pole nyata p i, ada sebuah bentuk yang sesuai dengan respon proses: Jika p i <0 untuk i=1,2,.., n. y(t) akan meluruh ke sebuah harga keadaan-tunak secara eksponensial Jika ada pole manapun p i >0, maka y(t) akan tidak terbatas – tidak stabil. Efek Pole

9 9 Pole Nyata yang Negatif Pole

10 10 Pole yang Murni Imajiner Jika sistem mempunyai sepasang pole yang murni imajiner maka: Osilasi tanpa peluruhan Semua pole kompleks harus berada dalam pasangan Pole

11 11 Memplotkan pole pada bidang kompleks Perilaku proses dengan pole kompleks murni Pole

12 12 Pole kompleks (sepasang) Jika sistem mempunyai sepasang pole kompleks maka y(t): Jika Re(p i )<0, maka ada bagian dari bentuk y(t) hilang ke titik unik Jika Re(p i )>0, maka paling sedikit ada satu bagian tersebut, y(t) akan tidak stabil Pole

13 13 Perilaku proses dengan pole campuran antara nyata dan kompleks Pole

14 14 Pole Perilaku proses dengan pole tidak stabil

15 15 Pole

16 16 Pole

17 17 Zero Fungsi alih Jika adalah konstanta waktu yang dominan

18 18 Zero Observasi penambahan zero ke proses orde dua redaman lebih menghasilkan overshoot dan respon berlawanan respon berlawanan terlihat ketika zero terletak di bidang kompleks sebelah kanan, Re(z)>0 overshoot terlihat ketika zero-nya dominan pembatalan pole-zero menghasilkan perilaku proses orde satu pada sistem fisik, overshoot dan respon berlawanan adalah hasil dari dua proses dengan konstanta waktu berbeda, yang berperan pada arah yang berlawanan

19 19 Zero Dapat dihasilkan dari dua proses paralel Jika gain tandanya berlawanan dan konstanta waktunya berbeda maka zero yang terletak di kanan akan terjadi

20 20 Dead Time Waktu yang dibutuhkan untuk fluida mencapai Titik B dari Titik A adalah dead time

21 21 Dead Time Fungsi alih yang didelay yakni, Orde satu plus dead time Orde dua plus dead time:

22 22 Dead Time Dead time (delay): Banyak proses akan menampilkan beberapa tipe lag time (waktu perlambatan) Dead time adalah kejadian yang hilang antara perubahan input dan respon proses

23 23 Aproksimasi Padé Problem penggunaan aproksimasi dead-time membuat analisis (pole dan zero) menjadi lebih sulit Prakirakan dead-time dengan fungsi (polinomial) rasio Yang paling umum adalah aproksimasi Padé

24 24 Aproksimasi Padé

25 25 Aproksimasi Padé Secara umum aproksimasi Padé bukan aproksimasi dead-time yang baik Aproksimasi Padé lebih baik ketika kita mengaproksimasikan proses orde satu plus dead- time Aproksimasi Padé menyebabkan respon berlawanan (zero terletak di bidang kanan) pada fungsi alih Penggunaan praktisnya terbatas

26 26 Matlab Perhitungan mudah dilakukan di Matlab Fungsi AKAR – temukan pole dan zero Contoh: Untuk menemukan pole: (persamaan karakteristik) Untuk menemukan zero:

27 27 Matlab Diketahui sebuah sistem linear Fungsi alih: Zero, Pole dan Gain (ZPK):

28 28 Matlab State space

29 29 Matlab Time Delay Time delay dapat ditandai pada sifat Input Delay sebuah sistem

30 30 Matlab Respon perubahan UNIT STEP Respon IMPULSA

31 31 Matlab Respon terhadap input asal Lsim(system, u, t) u: vektor input t: vektor waktu Contoh: u(t)=sin(t): 50 menit pertama

32 32 Aproksimasi Proses Time delay murni dapat mengaproksimasi rangkaian sistem orde satu yang banyak jumlahnya

33 33 Aproksimasi Proses Orde dua redaman lewat atau orde satu plus dead time? Model proses orde dua bisa lebih sulit untuk dikenali

34 34 Sistem Orde Lebih Tinggi Kolom Distilasi Multi-tray Pada tiap tray, sistem yang menghubungkan suhu dengan laju alir adalah sebuah sistem orde satu Perubahan pada laju reflux mempengaruhi kondisi pada reboiler hanya setelah beberapa periode waktu

35 35 Aproksimasi Proses Proses yang yang lebih rumit Proses orde lebih tinggi (Rangkaian Sejumlah N tangki) Untuk dua konstanta waktu yang dominan  1, proses lebih baik diaproksimasi dengan Untuk satu konstanta waktu dominan  1 dan  2, proses lebih baik diaproksimasi dengan

36 36 Aproksimasi Proses Contoh

37 37 Interacting Systems Sistem non-interaksi Level cairan pada tangki kedua tidak mempengaruhi level pada tangki pertama

38 38 Interacting Systems Sistem terinteraksi Level cairan pada tangki 1 tergantung pada level di tangki 2, juga sebaliknya

39 39 Sistem MIMO Sistem SISO Proses yang hanya mempunyai satu variabel input dan satu variabel output atau dikenal dengan Single-Input Single Output (SISO) Sistem MIMO Aplikasi pengendalian proses yang melibatkan sejumlah variable input (manipulated) dan output (controlled) yang dikenal dengan Multi- Input Multi-Output (MIMO)

40 40 Sistem MIMO Tangki pencampuran

41 41 Sistem MIMO Tangki pencampuran Kedua input seharusnya dimanipulasikan secara simultan untuk menjaga suhu dan level pada harga yang diinginkan Sebuah sistem multi-variable diperlukan.

42 42 Sistem MIMO Model yang dilinearisasi Setelah linearisai

43 43 Sistem MIMO Bentuk kompak Matrik fungsi alih

44 44 Sistem MIMO Setelah linearisasi


Download ppt "2 Fungsi alihnya ditulis dalam bentuk rasio fungsi polinomial sistem orde n ( ) : Bentuk gain/konstanta waktu: Untuk sistem orde satu dan orde dua, karakteristik."

Presentasi serupa


Iklan oleh Google