Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

CAPITAL ASSET PRICING MODEL (CAPM). Pengertian CAPM 1.Menurut William F. Sharpe CAPM merupakan model penetapan harga aktiva equlibrium yang menyata-kan.

Presentasi serupa


Presentasi berjudul: "CAPITAL ASSET PRICING MODEL (CAPM). Pengertian CAPM 1.Menurut William F. Sharpe CAPM merupakan model penetapan harga aktiva equlibrium yang menyata-kan."— Transcript presentasi:

1 CAPITAL ASSET PRICING MODEL (CAPM)

2 Pengertian CAPM 1.Menurut William F. Sharpe CAPM merupakan model penetapan harga aktiva equlibrium yang menyata-kan bahwa ekspektasi return atas sekuritas adalah fungsi linier positif dari sensitifitas sekuritas (β) terhadap perubahan return portofolio pasar. 2.Menurut Jack Clark Franers CAPM adalah teori penilaian resiko dan keuntungan aset yang didasarkan koefisien beta (indek resiko yang tidak dapat di diversifikasi.

3 Dalam CAPM ada beberapa asumsi yang biasa digunakan : 1.Investor mengevaluasi portofolio dengan melihat return yang diharapkan dan simpangan baku untuk satu periode 2.Investor tidak pernah puas. 3.Investor adalah risk averse. 4.Aset Individual dapat tidak terbatas. 5.Investor dapat memberi pinjaman atau meminjam sejumlah dana pada tingkat suku bunga bebas resiko. 6.Pajak dari biaya transaksi tidak relevan.

4 Rumus CAPM untuk return saham : Rumus CAPM untuk expected return saham i Dimana : R i =return saham i R f = return investasi i bebas resiko (risk free) β i =beta saham i (resiko sistematik) R m =return pasar

5 Resiko sisitematik sering disebut beta (β), karena itu beta dianggap representatif untuk digunakan dalam mengukur resiko sistematik (resiko yang tidak dapat di diversifikasi), oleh sebab itu besarnya resiko suatu saham ditentukan oleh beta. Dalam pembahasan CAPM, beta (β i ) diartikan sebagai resiko saham sistematik.

6 β > 1ini menunjukkan harga saham lebih mudah berubah dibandingkan indeks pasar. β < 1ini menunjukkan harga saham tidak terjadinya kondisi yang mudah berubah berdasarkan kondisi pasar. β = 1ini menunjukkan bahwa harga saham kondisinya sama dengan indeks pasar.

7 Capital Market Line (Garis Pasar Modal) Capital market line adalah garis yang menggambarkan suatu hubungan antara expected return dengan total resiko pada portofolio efisien di kondisi pasar yang seimbang.

8 Gambar : Capital Market Line (CML) σMσM E(R M ) M RfRf CML resiko portofolio pasar 0 M = E(R M - R f )

9 Security Market Line (Garis Pasar Sekuritas) Security market line menunjukkan garis yang menghubungkan antara tingkat return yang diharapkan dari suatu sekuritas dengan resiko sistematik. Resiko sistematik dapat diukur dengan menggunakan beta (β). Jadi beta (β) dapat mengukur resiko sekuritas

10 Gambar : Security Market Line (SML) β =0,5 30% M R f =10% SML 0 B low risk in market high risk in market A 40% 20% β = 1β =1,5

11 Jika diperhatikan gambar SML, terlihat bahwa SML adalah garis yang meng-hubungkan expected return dan beta. Jadi hubungan antara expected return dan beta dapat dijelaskan yaitu : – Jika E(R) dan β adalah positif, maka artinya untung – Jika E(R) dan β adalah negatif, maka artinya rugi

12 Penerapan CAPM pada Proyek Di bawah ini ada 2 proyek yang sedang dipertimbangkan masing-masing dengan investasi Rp SituasiProbabilitasRMRM Return Proyek A Return Proyek B ,1 0,2 0,1 0,3 -0,3 -0,1 0,1 0,3 -0,4 -0,2 0 0,7 -0,4 -0,2 0,6 0

13 Dalam hubungannya dengan CAPM, pertanyaan yang akan dijawab adalah : 1.Menghitung rata-rata mean, varian, deviasi standar, kovarian proyek 1 dengan pasar, kovarian proyek 1 dan proyek 2, koefisien korelasi proyek dengan R M dan koefisien korelasi proyek 1 dan proyek 2.

14 2.Bila proyek 1 dan 2 digabungkan menjadi satu portofolio, di mana 40% proyek 1 dan 60% proyek 2. Menghitung tingkat keuntungan yang diharapkan dari portofolio dan beberapa deviasi standarnya. 3.Dengan r f = 0,04 hitunglah SML, dan gambar dalam 1 grafik. a.Garis pasar surat berharga (SML = Security Market Line) b.Gambar titik-titik proyek 1 dan 2.

15 Pembahasan : 1.Mean, Varian dan Deviasi R M SProbRMRM Prob.xR M R M -R M (R M -R M ) 2 P(R M -R M ) ,1 0,2 0,1 0,3 -0,3 -0,1 0,1 0,3 -0,03 -0,02 0,03 0,12 -0,4 -0,2 0 0,2 0,16 0,04 0 0,04 0,006 0, ,012 RMRM 0,10Var (R M )0,036 Deviasi Standar (∂ M )0,19

16 a.Mean, Varian dan Deviasi Standar Proyek 1 SProbR1R1 Prob.xR 1 R 1 -R 1 (R 1 -R 1 ) 2 P(R 1 -R 1 ) ,1 0,2 0,3 0,4 -0,4 -0,2 0 0,7 -0,04 0 0,28 -0,6 -0,4 -0,2 0,5 0,36 0,16 0,04 0,25 0,036 0,032 0,012 0,100 R1R1 0,20Var (R 1 )0,180 Deviasi Standar (∂ 1 )0,424

17 b.Mean, Varian dan Deviasi Standar Proyek 2 SProbR2R2 Prob.xR 2 R 2 -R 2 (R 2 -R 2 ) 2 P(R 2 -R 2 ) ,1 0,2 0,3 0,4 -0,4 -0,2 0,6 0 -0,04 0, ,5 -0,3 0,5 -0,1 0,25 0,09 0,25 0,01 0,025 0,018 0,075 0,004 R2R2 0,10Var (R 2 )0,122 Deviasi Standar (∂ 2 )0,349

18 c.Kovarian dan Korelasi Proyek 1 dengan Pasar SProbR 1 -R 1 R M -R M CovarianProb (3 x 4)6 (2 x 5) ,1 0,2 0,3 0,4 -0,6 -0,4 -0,2 0,5 -0,4 -0,2 0 0,2 0,24 0,08 0 0,10 0,024 0, ,040 Covarian (R 1, R M )0,080 Korelasi Proyek 1 dengan Pasar (r) atau ρ 1M

19 d.Kovarian dan Korelasi Proyek 2 dengan Pasar SProbR 2 -R 2 R M -R M CovarianProb (3 x 4)6 (2 x 5) ,1 0,2 0,3 0,4 -0,5 -0,3 0,5 -0,1 -0,4 -0,2 0 0,2 0,20 0, ,02 0,020 0, ,008 Covarian (R 2, R M )0,024 Korelasi Proyek 2 dengan Pasar (r) atau ρ 2M

20 e.Kovarian dan Korelasi Proyek 1 dengan 2 SProbR 1 -R 1 R 2 -R 2 CovarianProb (3 x 4)6 (2 x 5) ,1 0,2 0,3 0,4 -0,6 -0,4 -0,2 0,5 -0,5 -0,3 0,5 -0,1 0,30 0,12 -0,10 -0,05 0,030 0,024 -0,030 -0,020 Covarian (R 1, R 2 )0,004 Korelasi Proyek 1 dengan Proyek 2 atau ρ 12

21 2.Tingkat Keuntungan yang diharapkan dan Deviasi Standar Portofolio SR1R1 R2R2 W 1 x R 1 40% x R 1 W 2 x R 2 60% x R 2 RpRp (4 + 5) ,4 -0,2 0 0,7 -0,4 -0,2 0,6 0 -0,16 -0,08 0 0,28 -0,24 -0,12 0, ,40 -0,20 0,36 0,

22 SProbRpRp P.R p R p -R p (R p -R p ) 2 P(R p -R p ) ,1 0,2 0,3 0,4 -0,40 -0,20 0,36 0,28 -0,040 0,108 0,112 -0,54 -0,34 0,22 0,14 0,292 0,116 0,048 0,020 0,025 0,018 0,075 0,004 RpRp 0,140Var (R p )0,074 Deviasi Standar (∂ p )0,273

23 Varian portofolio sama dengan mengguna-kan rumus : = W 1 2 Var R 1 + W 2 2 Var R W 1 W 2 Cov(R 1 R 2 ) = (0,4) 2 (0,180) + (0,6) 2 (0,122) + 2 (0,4) (0,6) (0,0040) = 0, , ,00192 = 0,07464

24 3.Garis pasar surat berharga (SML = Security Market Line) Dimana

25 Gambar : Grafik SML Proyek 1 dan Proyek 2 0,67 SML 0 Proyek 2 0,04 1,0 0,08 0,12 0,16 0,18 E(R i ) 0,17 Proyek 1 0,51,52,02,52,22

26 E(R 1 )= 0,04 + 2,22 (0,1 – 0,004) = 0,17 E(R 2 )= 0,04 + 0,67 (0,1 – 0,004) = 0,08 Pemilihan Proyek Proyek 1 Proyek 2 Hasil yang diharapkan (expected) Hasil yang dikehendaki (required) 0,200 0,170 0,100 0,080 Hasil lebih (excess return)0,0300,020 Kesimpulan :Proyek 1 lebih baik, dibanding- kan proyek 2


Download ppt "CAPITAL ASSET PRICING MODEL (CAPM). Pengertian CAPM 1.Menurut William F. Sharpe CAPM merupakan model penetapan harga aktiva equlibrium yang menyata-kan."

Presentasi serupa


Iklan oleh Google