Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

PENDAHULUAN Tujuan Tujuan utama suatu usaha bisnis : memaksimumkan laba atau meminimumkan biaya. kendala - Untuk itu,pasti usaha itu memiliki berbagai.

Presentasi serupa


Presentasi berjudul: "PENDAHULUAN Tujuan Tujuan utama suatu usaha bisnis : memaksimumkan laba atau meminimumkan biaya. kendala - Untuk itu,pasti usaha itu memiliki berbagai."— Transcript presentasi:

1

2 PENDAHULUAN Tujuan Tujuan utama suatu usaha bisnis : memaksimumkan laba atau meminimumkan biaya. kendala - Untuk itu,pasti usaha itu memiliki berbagai kendala s.d Baik tujuan maupun kedala pada umumnya dalam kondisi deterministik. -Suhubungan dengan itu, Linier Programming (LP) memberikan solusi dalam pengambilan keputusan usaha bisnis tsb. -Linier programming adalah suatu teknik atau cara yang membantu dalam keputusan mengalokasi sumberdaya yang dimiliki perusahaan. -Sumberdaya tersebut meliputi misalnya, mesin-mesin, tenaga kerja, uang, waktu, kapasitas gudang (ruangan), material, dll., yang akan digunakan untuk memproduksi barang (sandang, pangan, papan, dll) atau jasa (rencana pengiriman dan produksi, keputusan investasi, kebijakan advertensi, dll)

3 Persyaratan Yang Diperlukan Dalam L P : 1. Perusahaan mempunyai tujuan,yaitu memaksimumkan laba atau miminimumkan biaya 2. Perusahaan mempunyai kerterbatasan atau kendala sumberdaya dalam mencapai tujuan. 3. Perusahaan mempunyai keputusan atau kegiatan alternatif, salah satu diantaranya dipakai atau dipilih untuk mencapai tujuan. 4. Tujuan dan kendala dinyatakan dalam hubungan persamaan ( = ) dan pertidaksamaan ( ) matematik yang linier.

4 Beberapa Asumsi Yang Berlaku Dalam LP : 1.Kondisi-kondisi bisnis dalam perusahaan dalam kepas- tian dimana nilai-nilai, jumlah-jumlah dalam fungsi tujuan dan kendala diketahui dengan pasti (deterministik), tidak berubah selama periode analisis. 2.Hubungan dalam fungsi tujuan dan kendala adalah proporsional dalam bentuk matematik yang linier, contoh : L = 10 X  jika X = 2, maka L = 20 jika X = 4, maka L = 40 M < 60X  jika X = 2, maka M < 120 jika X = 5, maka M < Bentuk fungsi tujuan dan kendala besifat aditivity, artinya jumlah total nilai kegiatan = penjumlahan dari nilai-nilai kegiatan individu : L = $3 X1 + $5 X2  Jika X1 = 10 dan X2 = 20, maka L = $3(10) + $5(20) = $ Barang dan jasa yang dihasilkan (variabel keputusan) harus positif bukan negatif ( non negatively ) paling tidak nol (tidak menghasilkan)

5 Sejarah Linier Program -LP telah dikembangkan sebelum perang dunia II oleh matematika-wan Rusia, A.N. Kolmogorov dan Leonid Kantorovic penerima nobel “Optimasi Perencanaan” -Dalam aplikasi berikutnya LP dikembangkan oleh Stigler (1945) dalam persoalan Diit (kesehatan).

6 -Perkembangan berikutnya (1947),George D.Dantzig me-ngembang kan solusinya dengan metode simplex. Jasa Dantzig ini luar biasa sehingga kita kenal sampai sekarang dengan istilah “Linier Programming”. Dia seorang matematikawan di Angkatan Udara Inggris menjabat sebagai kepala Pengendali Analisis Perang Angkatan Udara. Saat itu militer memerlukan sekali program perencanaan latihan militer, pemasokan peralatan dan amunisi, penempatan unit- 2 tempur. Dantzig memformulasikan sistem pertidaksamaan linier -Setelah perang dunia II aplikasi dalam dunia bisnis luar biasa, misalnya dalam usaha pengolahan, jasa, pertanian, dll. -Tahun 1984 N.Karmarkar mengembangkan model yang lebih su-perior dari metode simplex utk berbagai aplikasi yg lebih luas.

7 Model Formulasi Model LP berisikan beberapa komponen dan karakteristik tertentu. Komponen adalah Fungsi Tujuan dan Fungsi Kendala, didalamnya terdapat Variabel Keputusan dan Parameter. Variabel Keputusan adalah simbol matematik dari kegiatan yang dilakukan oleh perusahaan, misalnya : X1 = jml. Radio, X2 = jml.Televisi dan X3 = jml Kulkas yang akan diproduksi Parameter adalah nilai-nilai di depan variabel keputusan yang pada dasarnya sudah diketahui. Fungsi Tujuan merupakan hubungan matematika linier yg menggambarkan tujuan perusahaan baik memaksimumkan laba atau meminimumkan biaya untuk membuat variabel keputusan. Fungsi Kendala juga merupakan hubungan linier antar variabel keputusan yg menggambarkan keterbatasan sumberdaya. Misalnya, keterbatasan dlm. jumlah eTenaga Kerja utk memproduksi radio sebesar 40 jam/hari selama periode produksi. Nilai-nilai Konstanta dalam fungsi tujuan atau kendala juga mrupakan parameter.

8 Sebuah industri XYZ berkecimpung dalam proses produksi dua macam produk, yaitu produk A dan B. Kedua produk tesebut dapat dijual ma- sing-masing dengan harga Rp 3000,00 per unit. Dalam proses produksi- nya diperlukan tiga macam departemen, yaitu Departemen P yang me- miliki 3 unit mesin tipe P, Departemen Q memiliki 6 unit mesin tipe Q dan Departemen R memiliki 9 unit mesin tipe R. Lama waktu pemakaian mesin mesin tersebut berbeda untuk setiap produk. Produk A memerlukan waktu 2 jam untuk proses produksinya pada me- sin tipe P, kemudian 2 jam pada mesin tipe Q dan 4 jam pada mesin tipe R. Sedangkan untuk produk B memerlukan waktu 1 jam pada mesin tipe P, kemudian 3 jam pada mesin tipe Q dan 3 jam pada mesin tipe R. Lamanya waktu mesin-mesin tersebut beroperasipun sangat terbatas, yaitu mesin tipe P beroperasi selama 10 jam per hari per mesin, kemu- dian mesin tipe Q dapat beroperaasi 10 jam per hari per mesin dan me- sin tipe R beroperaasi selama 8 jam per hari per mesin. - Rumuskan persoalan tsb. dalam model program linier (formula matematika) ! - Gambarlah persoalan LP tersebut dan Hitunglah berapa produk A dan B harus dijual sehingga penerimaannya maksimal METODE GRAFIK PERSOALAN MAKSIMASI. CONTOH : PERUSAHAAN XYZ

9 SdABKap. P Q R Harga Dari contoh persoalan LP di atas, dapat diringkas pada tabel berikut : Kemudian dengan lebih mudah dapat disusun formulasi matematisnya : Max. TR = 3000A B Stc. P : 2A + B < 30 Q : 2A + 3B < 60 R : 4A + 3B < 72 A, B > 0 Metode Grafik / Maksimasi < 30 < 60 <

10 Max. TR = 3000A B Stc. P : 2A + B < 30 Q : 2A + 3B < 60 R : 4A + 3B < 72 A, B > 0 R : 4A + 3B < 72 Q : 2A + 3B < 60 GAMBAR FUNGSI KENDALA 2A + B < 30 P : 2A + B < 30 Jika A = 0, maka B = 30 Jika B = 0, maka A = 15

11 TR = 3000A B  B = TR / A 0 = 3000(0) (0) = 3000(15) (0) = 3000(0) (20) = 3000(9) (12) > = IMPOSIBLE = 3000(6) (16) FISIBLE AREA dan ISO REVENUE Solusi : Produk A = 6 unit Produk B = 16 unit TR = $ Evaluasi Sumberdaya : P : 2(6) + 1(16) = 28 jam  sisa 2 jam Q : 2(6) + 3(16) = 60 jam  persis R : 4(6) + 3(16) = 72 jam  persis B A Metode Grafik / Maksimasi P Q R

12 A B C D KEPUTUSAN BERALTERNATIF 1) Antara titik A dan B 2) Antara titik B dan C 3) Antara titik C dan D

13 Variabel Slack -Ingat bahwa solusi terjadi pada titik ekstrim, di mana garis pertidaksamaan kendala berpotongan satu sama yang lain atau berpotongan dengan sumbu pada grafk. Jadi dalam hal ini, kendala-kendala tersebut lebih dipertimbangkan sebagai persamaan daripada pertidaksamaan. -Prosedur baku untuk merubah pertidaksamaan kendala menjadi persamaan, adalah dengan menambah sebu- ah variabel baru ke dalam masing-masing kendala, yang disebut sebagai variabel slack. - Untuk contoh perusahaan XYZ di muka, model kendala adalah : P : 2A + B < 30 Q : 2A + 3B < 60 R : 4A + 3B < 72

14 -Penambahan sebuah variabel slack,S1 pada kendala P, S2 pada kendala Q dan S3 pada kendala R hasilnya dapat dilihat sbb. : P : 2A + B + S1 = 30 Q : 2A + 3B + S2 = 60 R : 4A + 3B + S3 = 72 - Variabel slack S1, S2 dan S3 merupakan nilai yang diperlukan untuk membuat sisi sebelah kiri persamaan menjadi sama dengan sisi sebelah kanan. Misalnya secara hipotetis, A = 9 dan B = 10. Masukkan kedua nilai itu kedalam persamaan : P : 2(9) S1 = 30 → S1 = 2 Q : 2(9) + 3(10) + S2 = 60 → S2 = 12 R : 4(9) + 3(10) + S3 = 72 → S3 = 6

15 -Dalam contoh di atas, menghasilkan solusi yang tidak menghabiskan jumlah sumberdaya. Pada kendala P hanya menggunakan 28 jam, berarti sisa 2 jam yang tidak digunakan. -Jadi S1 merupakan jumlah waktu yang tidak digunakan pada sumberdaya P atau disebut slack P. Demikian juga pada kendala Q dan R masing-masing mempunyai slack Q dan slack R sebagai sisa 12 jam dan 6 jam yang tidak digunakan. -Jika perusahaan belum melakukan kegiatan produksi, maka seluruh kapasitas sumberdaya masih utuh slack- nya masing-masing sebesar 30, 60 dan 72 jam

16 Pengaruh Variabel Slack Terhadap Fungsi Tujuan Fungsi tujuan dari contoh adalah : TR = 3000 A B. Koefisien dan 3.000, masing-masing merupakan kontribusi TR setiap produk A dan produk B. Lalu, apa wujud kontribusi variabel slack S1 dan S2 ?. Variabel slack tidak mempunyai kontribusi apapun terhadap TR sebab variabel slack merupakan sumber- daya yg tidak digunakan. TR dicapai hanya setelah sumberdaya digunakan dalam proses produksi. Dengan demikian variabel slack dalam fungsi tujuan dapat ditululis parameter 0, sbb : TR = 3000A B + 0S1 + 0S2 + 0S3

17 Seperti halnya pada variabel keputusan (A dan B), va- riabel slack bernilai non-negative, sebab tidak mungkin sumberdaya itu negatif. Oleh karenanya, model formulasinya : A, B, S1, S2 dan S3 > 0 Dengan adanya varibel slack, model LP baku secara lengkap dapat ditulis sbb.: Maksimumkan : TR =3000 A B+ 0S1+ 0S2 +0S3 Kendala 2A + B + S1 = 30 2A + 3B + S2 = 60 4A + 3B + S3 = 72 A, B, S1, S2 dan S3 > 0

18 Seperti halnya pada variabel keputusan (A dan B), va- riabel slack bernilai non-negative, sebab tidak mungkin sumberdaya itu negatif. Oleh karenanya, model formulasinya : A, B, S1, S2 dan S3 > 0 Dengan adanya varibel slack, model LP baku secara lengkap dapat ditulis sbb.: Maksimumkan : TR =3000 A B+ 0S1+ 0S2 +0S3 Kendala 2A + B + S1 = 30 2A + 3B + S2 = 60 4A + 3B + S3 = 72 A, B, S1, S2 dan S3 > 0

19 w A = 0 B = 20 TR = S1 = 10 S2 = 0 S3 = 12 X A = 6 B = 16 TR = S1 = 2 S2 = 0 S3 = 0 Y A = 9 B = 12 TR = S1 = 0 S2 = 6 S3 = 0 Z A = 15 B = 0 TR = S1 = 0 S2 = 30 S3 = 12 Max. TR = 3000 A B Kendala : 2A + B + S1 < 30 2A + 3B + S2 < 60 4A + 3B + S3 < 72 A, B, S1, S2 dan S3 > 0

20 Perusahaan ini memproduksi dua macam produk, yaitu Meja dan Kursi, dimana dalam proses produksinya harus melalui departemen Assembling dan Finishing.Departemen assembling tersedia waktu 60 jam, sedangkan departemen finishing dapat menangani hingga sampai 48 jam kerja. Untuk membuat sebuah meja memerlukan waktu 4 jam untuk assembling dan 2 jam untuk finishing. Untuk membuat sebuah kursi diperlukan waktu 2 jam pada assembling dan 4 jam pada fininshing. Jika Laba setiap satu meja sebesar $ 8 dan setiap satu kursi $ 6, persoalan yang dihadapi perusahaan BW adalah menentukan kombinasi produksi meja dan kursi yang terbaik, dan menjual- nya sedemikian rupa sehingga memperoleh laba maksimum. Pada kasus di atas, terdapat dua kendala, yaitu waktu yang tersedia pada departemen assembling dan finishing. Informasi tentang persoalan perusahaan BW seperti dikemukakan di atas, dapat disajikan dalam tabel berikut ini : Contoh lain : Persoalan Perusahaan BW

21 Sumberdaya Jam yg diperlukan per unit Meja /Kursi Meja Kursi Jml jam yg tersedia Assembling Finishing Laba per unit $ 8 $6 Maksimumkan : L = 8 M + 6 K Kendala : 4 M + 2 K < 60 2 M + 4 K < 48 M, K > 0 M = Meja K = Kursi

22 4 M + 2 K < 60 2 M + 4 K < 48 (12, 6) A B C D Solusi A M = 0 K = 0 L = 0 S A = 60 S F = 48 Solusi B M = 0 K = 12 L = 72 S A = 36 S F = 12 Solusi C M = 12 K = 6 L = 132 S A = 0 S F = 0 Solusi D M = 15 K = 0 L = 120 S A = 0 S F = 18 K M Keputusan: Jml Meja yang diproduksi sebanyak : 12 unit Jml kursi yang diproduksi sebanyak : 6 unit Laba = $8(12) + $6(6) = $ 132 Penggunaan Sumberdaya : Assembling : (4x12)+(2x6) = 60 unit (persis) Finishing : (2x12)+ (4x6) = 48 unit (persis)

23 Untuk Titik C : 4M + 2K = 60 →x1 = 4M + 2K = 60 2M + 4K = 48 →x2 = 4M + 8K = 96 ― 0M ― 6K = ―36 K = 6 M = 12 Atau 4M + 2K ― 60 = 2M +4K ― 48 2M ― 2K = 12 M = 6 + K 4M + 2K = 60 4(6 + K) + 2K = 60 K = 6 M = 12

24 Latihan : Sebuah perusahaan membuat dua macam produk (A dan B) dari dua sumberdaya SD1 dan SD 2. Jika perusahaan berhasil membuat produk tersebut, perusahaan akan mem- peroleh laba sebesar $ 8 (prodk A)dan $ 4 (produk B). Untuk membuat kedua produk tersebut setiap satu produk A yang diproses di SD 1 diperlukan waktu sebanyak 4 jam,sedang untuk setiap satu produk B dibutuhkan waktu 5 jam, sedangkan SD 1 hanya tersedia waktu 20 jam. Pada SD 2,setiap satu produk A yang diproses diperlukan waktu sebanyak 2 jam,sedang untuk setiap satu produk B dibutuhkan waktu 6 jam, sementara SD 2 terbatas waktu sebanyak 18 jam saja. Saudara sebagai manajer RO, diminta untuk menyusun persoalan ini dalam bentuk LP untuk menentukan jumlah kedua produk yang akan dibuat. Selesaikan persoalan ini dengan metode grafik.

25 Metode Grafik / Minimasi Contoh Soal Sebuah perusahan membuat bahan pelarut A dan B, yang menggunkan bahan Minyak tanah (MT), Damar (D) dan Spiritus (S). Biaya bahan pelarut A sebesar Rp 80,- dan bahan pelarut B sebesar Rp 100,-. Masing-masing bahan campurannya (MT,D dan S) minimal dibutuhkan sebanyak 24 liter Minyak Tanah, 20 Kg Damar, dan 24 liter spiritus. Untuk setiap bahan A dibutuhkan Minyak Tanah seba- nyak 8 liter, 10 kg Damar dan 6 liter Spiritus. Untuk seti- ap bahan B dibutuhkan Minyak Tanah 6 liter, Damar 4 Kg, dan 12 liter Spiritus. Saudara diminta bantuan untuk menyelesaikan berapa bahan A dan B dibuat shingga biaya minimum ?. Selesaikan dengan metode grafik.

26 GAMBAR FUNGSI KENDALA Min. TC = 80A + 100B Stc. MT : 8A + 6B > 24 D : 10A + 4B > 20 S : 6A + 12B > 24 A, B > 0 MT : 8A + 6B > 24 B > 4 – 4 / 3 A D : 10A + 4B > 20 B > 5 - 2,5 A S : 6A + 12B > 24 B > 2 - 0,5 A A B B A B A Metode Grafik / Minimasi

27 FISIBLE AREA dan ISO COST ( 2, 4 ; 0,8 ) Solusi Optimal : B.Pelarut A = 2,4 unit B.Pelarut B = 0,8 unit TC min = 80 (2,4) + 100(0,8) = Rp 272 Penggunaan Sumberdaya : MT = 8(2,4) + 6(0,8) = 24 Lt.  persis D = 10(2,4) + 4(0,8) = 27,2 Kg.  > 20 S = 6(2,4) + 12(0,8) = 24 Lt.  persis Metode Grafik / Minimasi

28 PENDAHULUAN Kenyataan yang sering dihadapi oleh para manajer dalam pengambilan keputusan adalah kompleks. Keputusan yang harus diambil tidak hanya untuk 2 variabel saja, bisa saja lebih, sementara metode grafik terbatas hanya 2 demensi atau paling banyak menca- kup 3 variabel. Untuk mengatasi persoalan linier programming yang kompleks jelas menjadi tidak sederhana. Satu cara sederhana (simple) dan efisien yang dapat menyelesaikan persoalan adalah dengan Metode Simplex, di mana metode ini menggunakan tabel yang unik yang sering disebut “Tabel Simplek” METODE SIMPLEK

29 Metode simplek untuk linier programming dikembang- kan pertama kali oleh George Dantzing pada tahun 1947, kemudian digunakan juga pada penugasan di Angkatan Udara Amerika Serikat. Dia mendemonstrasi- kan bagaimana menggunakan fungsi tujuan (iso-profit) dalam upaya menemukan solosi diantara beberapa ke- mungkinan solosi sebuah persoalan linier programming. Proses penyelesaiaanya dalam metode simplek, dila- kukan secara berulang-ulang ( iterative ) sedemikian rupa dengan menggunakan pola tertentu (standart) sehingga solusi optimal tercapai. Ciri lain dari metode simplek adalah bahwa setiap solo- si yang baru akan menghasilkan sebuah nilai fungsi tujuan yang lebih besar daripada solosi sebelumnya.

30 MENYUSUN SOLUSI AWAL Utk memperoleh pengertian yg lebih mudah dan cepat, dalam pembahasan ini kita gunakan persoalan yang me- liputi 2 variabel riil saja (sekedar untuk cross cek) Dengan menggunakan contoh kasus perusahaan XYZ di muka, penyelesaian dapat dilakukan dengan beberapa langkah : Langkah 1. Menyususun Persoalan Dalam Matematik Maksimumkan : TR = 3000 A B Kendala : P : 2A + B < 30 Q : 2A + 3B < 60 R : 4A + 3B < 72 A, B > 0 Metode Simplek / Maksimasi

31 Langkah 2. Mengubah Pertidaksamaan menjadi Persamaan Mengandung pengertian : tidak selalu kapasitas SD digunakan seluruhnya, diantaranya masih ada yang tersisa  ada kelonggaran (slack) untuk menambah sebuah variabel sehingga menjadi persamaan. Variable baru ini disebut Variabel Slack = sejumlah unit kapasitas yang tidak dipakai dalam suatu Departemen/ SD. Variabel Slack Misal : S P = waktu yang tidak dipakai dlm.Dep. P  S P = A - B S Q =waktu yang tidak dipakai dlm Dep.Q  S Q = 60 -2A - 3B S R =waktu yang tidak dipakai dlm. Dep.R  S R =72 - 4A - 3B Atau dari persamaan diatas dapat disusun : 2A + B + S P = 30 2A + 3B + S Q = 60 4A + 3B + S R = 72 Metode Simplek / Maksimasi

32 Variabel Slack ini harus dimasukkan dalam fungsi tuju- an dan kendala. Koefisien setiap variabel pada kedua fungsi tsb. harus terlihat dengan jelas. Oleh karena itu, untuk variabel yang tidak mempunyai pengaruh terha- dap persamaan, koefisiennya harus ditulis dengan. “nol”, sehingga tidak merubah hakekatnya. Misal, karena : S P,,S Q, dan S R tidak menghasilkan TR, S Q, dan S R tidak berpengaruh terhadap Dep. P, S P dan S R tidak berpengaruh terhadap Dep. Q, S P, dan S Q tidak berpengaruh terhadap Dep. R, maka fungsi tujuan dan kendala dapat ditulis sbb. : TR = 3000 A B + 0 S P + 0 S Q + 0 S R. P : 2A + B + 1 S P + 0S Q + 0S R = 30 Q : 2A + 3B + 0S P + 1S Q + 0S R = 60 R : 4A + 3B + 0S P + 0S Q + 1S R = 72 Metode Simplek / Maksimasi

33 Langkah 3. Memasukkan Fungsi Tujuan dan Kendala ke Tabel Simplek Zj =  aij. Bi Sollusi Awal, belum berproduksi, Zj = 0 Metode Simplek / Maksimasi TR = 3000 A B + 0 SP + 0 SQ + 0 SR. P : 2A + B + 1 S P + 0S Q + 0S R = 30 Q : 2A + 3B + 0S P + 1S Q + 0S R = 60 R : 4A + 3B + 0S P + 0S Q + 1S R = 72

34 MENGEMBANGKAN SOLUSI KEDUA  Solusi awal menunjukkan perusahaan masih belum berproduksi.  Selanjutnya kita akan melakukan perubahan sehingga TR sebagai tujuan tercapai lebih baik.  Jika tabel yang telah diperbaiki masih ada kemungkinan dirubah untuk mencapai tujuan yang lebih baik lagi, maka perubahanpun terus berlanjut sampai tercapai solusi yang optimal.  Tahap-tahap perubahan dari tabel satu ke tabel yang lain disebut “ pivoting ”.  Perhitungan solusi kedua dapat diikuti dengan langkah-langkah berikut ini. Metode Simplek / Maksimasi

35 Langkah 1. Menentukan Variabel Riil yang akan dimasuk kan dalam solusi ( going in ) Secara rasional, memilih varibel riil yang tepat adalah variabel yang mempunyai kontribusi menambah laba/TR atau mengurangi biaya yang paling besar.  Dengan memilih nilai-nilai baris Cj - Zj pada kolom variabel riil yang terbesar, mengindikasikan adanya peningkatan laba/TR yang lebih baik.  Oleh karena Nilai Cj - Zj untuk kedua kolom variabel riil A dan B sama, maka bisa kita pilih salah satu.  Misalnya saja, kita tentukan kolom B, maka kolom B tersebut dinamakan “kolom optimum”, yang bakal pertamkalinya masuk dalam kolom variabel basis.

36 Langkah 2. Menentukan Variabel yang akan diganti ( going out )  Pertama kali, kita membagi nilai-nilai dalam kolom variabel basis dengan nilai-nilai pada kolom optimum, dan kemudian hasil bagi-hasil bagi tersebut kita pilih yang paling kecil.  Baris yang mempunyai nilai “Ri” terkecil bakal diganti atau dikeluakan dari variabel basis. Baris S P : 30 / 1 = 30 Baris S Q : 60 / 3 = 20  dikeluarkan Baris S R : 72 / 3 = 24 Elemen-elemen (nilai) pada basis S P, S Q dan S R di bawah kolom optimum, disebut elemen interseksional, yang akan beerperan dalam perhitungan nilai nilai pada tabel berikutnya. Metode Simplek / Maksimasi

37 Langkah 1 : menentukan kolom optimum (going in) Langkah 2 : menentukan baris optimum (going out) Aplikasi Langkah 1 dan Langkah 2

38 Menentukan / Menghitung : - Nilai baris baru yang lain : NBBL= NBL  (N Intsek x NBBM) Baris Sp : 30  ( 1 x 20) = 10 2  ( 1 x 2 / 3 ) = 1 1 / 3 1  ( 1 x 1) = 0 1  ( 1 x 0) = 1 0  ( 1 x 1/3) = - 1 / 3 0  ( 1 x 0) = 0 - Nilai baris baru yang masuk : NBBM = NBL : N. Insek : 60/3 = 20 ; 2/3 = 2/3 ; 3/3 = 1; 0/3 = 0 ; 1/3 = 1/3; 0/3 = 0 Baris Sr : 72  ( 3 x 20) = 12 4  ( 3 x 2 / 3 ) = 2 3  ( 3 x 1) = 0 0  ( 3 x 0) = 0 0  ( 3 x 1 / 3 ) = -1 1  ( 3 x 0) = 1

39 MENGEMBANGKAN SOLUSI KETIGA Menentukan / Menghitung : - Kolom optimum : pilih nilai Cj - Zj yang terbesar - Baris yang diganti : Pilih nilai Ri yang terkecil Ri = nilai Q / kolom optimum - Nilai baris baru yang masuk : NBBM = NBL : N Insek : 12/2 = 6 ; 2/2 =1 ; 0/2 = 0; 0/2 = 0; -1/2 = - 0,5; 1/2 = 0,5 - Nilai baris baru yang lain : NBBL= NBL  (N Intsek x NBBM) Baris Sp : 10  (1,33 x 6) = 2 1,33  (1,33 x1) = 0 0  (1,33 x 0) = 0 1  (1,33 x 0) = 1 - 0,33  (1,33 x -0,5) = 0,33 0  (1,33 x 0,5) = Baris B : 20  (0,67 x6) = 16 0,67  (0,67 x 1) = 0 1  (0,67 x 0) = 1 0  (0,67 x 0) = 0 0,33  (0,67 x - 0,5) = 0,67 0  (0,67 x 0,5) = NILAI-NILAI Cj - Zj < 0  SOLUSI OPTIMAL

40 INTERPERTASI EKONOMI TABEL SIMPLEK

41 Nilai 2 pada Kolom Q Tabel 3 : Baris Sp = 2 (Sisa Sbrdaya P) Baris B = 16 (Jml Prduksi B) Baris A = 6 (Jml Prduksi A) Baris Zj = (TR max.) Nilai 2 pada Baris Cj-Zj di bawah kolom vaibel riil menunjukkan nilai produk marginal : Jika positif menunjukkan kemungkinan tambahan TR jika variabel riil ditambah 1 unit Jika negatif menunjukkan pengurangan TR jika variabel riil ditambah 1 unit INTERPERTASI EKONOMI TABEL SIMPLEK

42 Nilai 2 di baris Zj menggambarkan berkurangnya TR (oportunity cost) akibat tambahan 1 unit kegiatan riil atau disposal Angka-angka dalam kwadran matrik (input-output) atau diberi simbul a ij menunjukkan MRTS atau Koefisien Teknologi antara kegiatan pada kolom dengan sumberdaya pada baris. Nilai 2 Negatif pada Baris Cj-Zj di bawah kolom var. Slack menunjukkan tambahan TR yg dapat dicapai jika ditambahkan 1 jam lagi pada departemen diwakili variabel slack

43 CONTOH : PERUSAHAAN PNT Perusahaan Nutrisi Ternak (PNT) khusus menghasilkan makanan campuran sebagai makanan tambahan, mendapat pesanan makanan campuran "141-B" dengan ukuran/paket 200 pon. Makanan Campuran tersebut terdiri dari dua bahan ramuan, yaitu P (sumber protein) dan C (sumber karbohidrat). Biaya bahan protein sebesar $ 3 per pon, sedang bahan karbohidrat sebesar $ 8 per pon. Dalam makanan campuran itu kandungan Protein (P) tidak boleh melebihi 40 % dan kandungan bahan Carbo- hidrat (C) paling tidak tersedia 30 %. Persoalan PNT,adalah menetapkan berapa banyak masing-masing bahan digunakan agar biaya minimal. Metode Simplek / Minimasi

44 FORMULASI MATEMATIKA PERSOALAN ( IDENTIFIKASI) Minimumkan : Cost = $ 3P+ $ 8C Kendala : P + C = 200 pon P < 80 pon C > 60 pon P dan C > 0 Metode Simplek / Minimasi

45 SOLUSI AWAL Merubah persamaan dan pertidaksamaan pada kendala - Untuk tanda Persamaan ( = ) harus ditambah dengan variabel Artifisial (A) - Untuk Pertidaksamaan”lebih besar sama dengan” ( > ) harus dikurangi variabel surplus (S) dan ditambah variabel Artifisial (A) - Untuk Pertidaksamaan kurang sama dengan ( < ) harus ditambah variabel slack (S) Utk Kendala : P + C = 200  P + C + A 1 = 200 P < 80  P + S 1 = 80 C > 60  C  S 2 + A 2 = 60 Metode Simplek / Minimasi

46 SOLUSI AWAL Koefisien teknologi (para meter) masing-masing variabel, secara ekplisit harus ditulis, dengan ketentuan yang tidak ada pengaruhnya ditulis nol Nilai biaya untuk variabel Artifisial diberi nilai yang sangat besar (M), dan untuk variabel Slack/Surplus = 0 Secara lengkap : Minimize: Cost = 3P + 8C + 0S 1 + 0S 2 + MA 1 + MA 2 P + C + A 1 = 200 P + S 1 = 80 C  S 2 + A 2 = 60 P, C, S 1, S 2, A 1, A 2 > 0 Metode Simplek / Minimasi

47 SOLUSI TABEL SIMPLEK Metode Simplek / Minimasi

48 SOLUSI TABEL SIMPLEK Metode Simplek / Minimasi

49 DUALITAS ANTARA MAKSIMASI dan MINIMASI Untuk setiap permasalahan optimasi yang mempunyai kendala/pembatas, akan terdapat “permasalahan dual”, yaitu dengan memaksimasi atau meminimasi fungsi kendala dan fungsi tujuan sebelumnya menjadi kendalanya. Hubungan ini disebut sebagai dualitas ( duality ) Permasalahan yang pertama disebut dengan “primal” dan permasalahan kedua disebut dengan “dual”. Jadi misalnya, jika permasalahan primalnya adalah maksimasi tujuan dengan kendala tertentu, maka sekarang menjadi dual, yaitu minimasi kendala dengan kendalanya adalah fungsi tujuannya. Demikian sebaliknya, jika permasalahan primalnya adalah menimasi tujuan dengan kendala tertentu, maka sekarang menjadi maksimasi kendala dengan fungsi tujuan sebagai kendalanya.

50 Dengan demikian dalam sebuah pemodelan Pemrogra- man Linear, terdapat dua konsep yang saling berlawa- nan. Konsep yang pertama kita sebut Primal dan yang kedua Dual.Bentuk Dual adalah kebalikan dari bentuk Primal. Hubungan Primal dan Dual sebagai berikut: Masalah Primal (atau Dual) Masalah Dual (atau Primal) Koefisien fungsi tujuan …………… Nilai kanan fungsi batasan Maksimumkan Z (atau Y) ………… Minimumkan Y (atau Z) Batasan i …………………………… Variabel yi (atau xi) Bentuk 0 Bentuk = …………………………… yi > dihilangkan Variabel Xj ……………………….. Batasan j Xj > 0 ………………………………. Bentuk < Xj > 0 dihilangkan ………………… Bentuk =

51 Contoh 1: Primal Minimumkan Z = 5X 1 + 2X 2 + X 3 Fungsi batasan: 1) 2X 1 + 3X 2 + X 3 > 20 2) 6X 1 + 8X 2 + 5X 3 > 30 3) 7X 1 + X 2 + 3X 3 > 40 X1, X2, X3 > 0 Dual Maksimumkan Z ’ = 20Y Y Y 3 Fungsi batasan: 1)2Y 1 + 6Y 2 + 7Y 3 < 5 2)3Y 1 + 8Y 2 + Y 3 < 2 3) Y 1 + 5Y 2 + 3Y 3 < 1

52 Langkah-langkah membentuk Dual Jika betuk primal adalah maksimasi, maka bentuk dual adalah minimasi, dan begitu sebaliknya. Nilai sisi kanan dari kendala akan menjadi koefisien fungsi tujuan dalam bentuk Dual Koefisien fungsi tujuan primal menjadi nilai sisi kanan dari kendala bentuk Dual. Transpose koefisien fungsi kendala primal menjadi koefisien fungsi kendala Dual

53 CONTOH : ( Ek. Mikro) Maksimumkan : Q = L. C Kendala : 1200 = 30L + 40C L dan C optimum = ? Jawab Slope Isoquant = Slope Budget Line  MPL / MPC =  PL / PC  C / L =  30 / 40 C = 3 / 4 L 1200 = 30L + 40 ( 3 / 4 L ) 1200 = 60L Jadi : L = 20 dan C = 15 Q max. = 20 x 15 = 300 Minimumkan : B = 30L + 40C Kendala : 300 = L. C L dan C optimum = ? Jawab Slope Isoquant = Slope Budget Line d C / d L =  PL / PC  300 / L 2 =  30 / 40 L 2 = 400 Jadi : L = (400) 1/2 = 20 dan C = 15 B min. = 30(20) + 40 (15 ) = 1200 PRIMALDUAL

54 CONTOH : USAHA KATERING (RANGSUM) Kasus Primal sebuah usaha kesehatan dalam rangka membuat susunan rangsum dari berbagai bahan makanan dengan biaya murah adalah sbb. : Minimumkan : Z =150X X X X X 5 Kendala : Protein : 8,3 X X 2 +17,2 X 3 + 5,2 X 4 + 2,01 X 5 > 70 Karbohidrat : 5 X X X 3 + 3,1 X X 5 > 3000 Lemak : 0,4 X X 2 +4,8 X 3 + 0,6 X 4 +0,16 X 5 > 800 Vitamin : 6 X X 2 +61,6 X 3 + 6,8 X 4 +2,05 X 5 > 40 Zat Besi : 24,9X X X 3 +16,4X 4 0,57 X 5 > 12 Dimana : X 1 = Nasi X 4 = Buah X 2 = Sayur X 5 = Susu X 3 = Lauk pauk Buatlah model Dual persoalan di atas, dan selesaikan !

55 CONTOH : USAHA KATERING (RANGSUM) Kasus Primal sebuah usaha kesehatan dalam rangka membuat susunan rangsum dari berbagai bahan makanan dengan biaya murah adalah sbb. : Minimumkan : Z =150X X X X X 5 Kendala : Protein : 8,3 X X 2 +17,2 X 3 + 5,2 X 4 + 2,01 X 5 > 70 Karbohidrat : 5 X X X 3 + 3,1 X X 5 > 3000 Lemak : 0,4 X X 2 +4,8 X 3 + 0,6 X 4 +0,16 X 5 > 800 Vitamin : 6 X X 2 +61,6 X 3 + 6,8 X 4 +2,05 X 5 > 40 Zat Besi : 24,9X X X 3 +16,4X 4 0,57 X 5 > 12 Dimana : X 1 = Nasi X 4 = Buah X 2 = Sayur X 5 = Susu X 3 = Lauk pauk Buatlah model Dual persoalan di atas, dan selesaikan !

56 JAWAB : Maksimumkan : Z’ = 70Y Y Y 3 +40Y 4 +12Y 5 Kendala : X 1 : 8,3 Y 1 + 5,0 Y 2 + 0,4 Y 3 + 6,0 Y ,9 Y 5 <150 X 2 : 246Y Y Y Y Y 5 < 100 X 3 :17,2 Y Y 2 +14,8Y 3 +61,6Y Y 5 < 350 X 4 : 5,2 Y 1 + 3,1Y 2 + 0,6 Y 3 + 6,8Y ,4Y 5 < 250 X 5 : 2,01 Y Y 2 + 0,16Y 3 + 2,05Y 4 +0,57 Y 5 < 320 Y 1, Y 2, Y 3, Y 4, Y 5 > 0

57 SOLUSI

58

59 Soal N0. 8 Perusahaan mebel Jati Indah memproduksi meja dan kursi dari sumberdaya tenaga kerja dan kayu. Perusahaan memiliki kapasitas terbatas untuk tenaga kerja 80 jam perhari dan 36 Kg kayu perhari. Permintaan atau penjualan kursi terbatas 6 kursi per hari. Untuk memproduksi satu unit kursi memerlukan 8 jam tenaga kerja dan 2 Kg kayu, sedang setiap satu meja memerlukan 10 jam tenaga kerja dan 6 Kg kayu. Laba yang diperoleh untuk setiap meja sebesar Rp dan untuk setiap kursi sebesar Rp Perusahaan ingin menetapkan jumlah meja dan kursi yang harus dijual agar memperoleh laba maksimum. a. Formulasikan model LP untuk persoalan ini. b. Selesaikan persoalan ini dengan analisis grafik.

60 MKKap Maximize Labor108<=80 Kayu62<=36 Demand01<=6 Solution-> SOAL N0. 8

61 Soal N0.12 Perusahaan Kimia Farma memproduksi sebuah obat dengan ramuan dua bahan. Setiap bahan berisi tiga antibiotik yang sama tapi berbeda dalam proporsinya. Satu gram bahan 1 menyumbangkan 3 unit dan bahan 2 menyumbangkan1 unit antibiotik 1; obat membutuhkan 6 unit. Sedikitnya 4 unit antibiotik 2 dibutuhkan, dan per gram bahan masing-masing menyumbang 1 unit. Paling sedikit 12 unit antibiotik 3 diperlukan; satu gram bahan 1 menyumbang 2 unit, dan satu gram bahan 2 menyumbang 6 unit. Biaya per gram bahan 1 dan bahan 2 masing-masing Rp dan Rp Kimia Farma ingin memformulasikan model LP untuk menetapkan jumlah (gram) masing-masing bahan yang harus digunakan dalam pembuatan obat agar biaya campuran antibiotik itu serendah mungkin. a. Formulasikan model LP untuk persoalan ini. b. Selesaikan persoalan ini dengan menggunakan analisis grafik.

62 Soal N0.12 BAHAN 1BAAN 2 RHSDual Minimize ANTIBITIK 131>= ANTIBITIK 211>= ANTIBITIK 326>=120 Solution->13 $ ,

63 Soal N0.12 VariableStatusValue BAHAN 1Basic1 BAHAN 2Basic3 surplus 1NONBasic0 surplus 2NONBasic0 surplus 3Basic8 Optimal Value (Z)230000

64 Soal N0.12 Cj Basic Variables Quantity BHN BHN 2 0 artfcl 1 0 surplus 1 0 artfcl 2 0 surplus 2 0 artfcl 3 0 surplu 3 Iterati 1$ 0artfcl artfcl artfcl Zj cj-zj Iteratn 2 0artfcl 142, ,16670,1667 0artfcl 220, ,16670, BHN 220, ,1667-0,1667 Zj , ,3333-0,3333 cj-zj3, ,33330,3333 Iterati BHN 11,5100,375-0, ,06250,0625 0artfcl ,250,251-0,1250, BHN 21,501-0,1250,125000,1875-0,1875 Zj ,25-0,25011,125-0,125 cj-zj00-1,250,250-1,1250,125 Iterati BHN ,5-1,5-0,250,25 0surplus ,50, BHN ,50,50,25-0,25 Zj cj-zj Iterati BHN ,5-1,5-0,250,25 0surplus ,50, BHN ,50,50,25-0,25 Zj , , ,00 cj-zj , , , ,00 Iterati BHN 11100,5-0,5 0,500 0surplus BHN ,50,51,5-1,500 Zj , cj-zj , , , ,0000

65 KASUS UCP SDX1X2Kap.Sur. Klaim1612 > Rusak0,51,4 > Kompt11 < 40 0 C Solusi040 TC =

66 KASUS Giman Piza SDPIPSKapSlack DM11 < ,5 TM48 < Sales PI 1 < 75 0 Sales PI 1 < ,5 Laba Solusi7562,584375

67 KASUS Toko PerhiasanSdKGKapSlackEmas Platina DG140 Laba Solusi0,40,3L=240000

68 KASUS Obat SdB1B2KapSur A131 > 6> 6> 6> 60 A211 > 4 > 4 > 4 > 40 A326 > 12 > 128 TC Solusi13TC=230000

69 KASUS Usaha Ternak Min. TC = 60A + 100K Stc. Pr : 20 A + 40 K > 30 Lm : 2 A + 0,5 K > 1 Prod. : 1 A + 1 K < 1 A, K,> 0SdAKkapSlackPr2040 > 30 0 Lm20,5 > 1> 1> 1> 10 Prod11 < 1< 1< 1< 10,07 Solusi0,360,57 TC21,4357,1478,57 78,571 43

70 KASUS Della & Pandu Mak. L = 2C + 2T Stc. K : 8 C + 6 T < 120 Tom : 3 C + 6 T < 90 B : 3 C + 2 T < 45 Prod : 1 C + 1 T < 24 C, T > 0 SdCTkapSlack K86 < Tom36 < 90 0 B32 < 45 3 Prod11 < 24 6 Solusi612 Laba ,571 43

71 KASUS Untitled Mak. L = 3 X + 2 Y Stc. A : 3 X + 2 Y < 120 F : 1 X + 2 Y < 80 Pro X : 1 X + 0 Y > 10 Pro Y : 0 X + 1 Y > 10 X, Y > 0 SdXYkapS A32 < F12 < 80 26,67 Pro X 1- > 10 13,33 Pro Y -1 > 10 0 Solusi33,3310 Laba


Download ppt "PENDAHULUAN Tujuan Tujuan utama suatu usaha bisnis : memaksimumkan laba atau meminimumkan biaya. kendala - Untuk itu,pasti usaha itu memiliki berbagai."

Presentasi serupa


Iklan oleh Google