Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

KONSEP DAN PENGUJIAN UNIT ROOT Pertemuan 3 - Time Series SEKOLAH TINGGI ILMU STATISTIK OLEH: FITRI KARTIASIH, S.ST, S.E, M.Si.

Presentasi serupa


Presentasi berjudul: "KONSEP DAN PENGUJIAN UNIT ROOT Pertemuan 3 - Time Series SEKOLAH TINGGI ILMU STATISTIK OLEH: FITRI KARTIASIH, S.ST, S.E, M.Si."— Transcript presentasi:

1 KONSEP DAN PENGUJIAN UNIT ROOT Pertemuan 3 - Time Series SEKOLAH TINGGI ILMU STATISTIK OLEH: FITRI KARTIASIH, S.ST, S.E, M.Si

2 Proses stokastik dan kestasioneran data time series

3 Stasioner  Data time series dikatakan stasioner jika rata–rata, varian dan covarian dari variabel–variabel tersebut seluruhnya tidak dipengaruhi oleh waktu atau dengan kata lain konstan.  1. Rata-rata series konstan untuk setiap periode pengamatan, dapat dituliskan sbb: E(Y t ) =  untuk setiap t  2. Varians atau ragam series konstan untuk setiap periode pengamatan, dapat dituliskan sbb: Var (Y t ) = E(Y t - ) 2 =  2 untuk setiap t  3. Covarians dua series konstan untuk setiap periode pengamatan, dapat dituliskan sbb: Cov (Y t, Y t-k) = E[(Y t - )(Y t-k - )] =  k untuk setiap t Data stationer dapat juga dikatakan sebagai data yang tidak mengandung unsur trend.

4 Mengapa stationary time series penting  Jika data time series tidak stasioner, maka hanya dapat mempelajari perilaku data untuk periode waktu under consideration, tidak bisa untuk forecasting (peramalan)  Data time series yang tidak stasioner juga bisa menimbulkan spurious regression (regresi semu atau palsu), ditandai dengan nilai R 2 yang tinggi dan t-stat, F-stat yang signifikan tetapi dw relatif kecil < 0.5

5 Non Stationary Stochastic Processes (Random Walk)  Random Walk merupakan model time series stokastik yang paling sederhana, dan merupakan contoh klasik dari model yang tidak stasioner. Ada dua bentuk random walk, yaitu:  Random walk tanpa intersep  Random walk dengan intersep 1. Random Walk Tanpa Intersep ( Random walk without drift)  Asumsi pada model ini adalah perubahan nilai Y t yang berurutan berdasarkan suatu distribusi probabilitas dengan mean 0. Dengan demikian, modelnya dapat dinyatakan dalam bentuk: Y t = Y t-1 + u t ; atau Y t - Y t-1 = u t ; E(u t ) = 0; E (u t u s ) = 0; t  s Dimana: u t adalah error yang “white noise” atau “purely random”, dengan mean = 0 dan varian = σ 2.

6  Model diatas juga dapat diartikan bahwa nilai Y pada waktu ke-t sama dengan nilai Y pada waktu ke-t-1 ditambah random. Bukti random walk tidak stasioner: Model random walk diatas dapat ditulis dengan: Y 1 = Y 0 + u 1. Y 2 = Y 1 + u 2 = Y 0 + u 1 + u 2. Y 3 = Y 2 + u 3 = Y 0 + u 1 + u 2 + u 3. Dengan demikian: Y t = Y 0 + Σu t. Sehingga: E(Y t ) = E(Y 0 + Σu t ) = E(Y 0 ) + E(Σu t ) Y 0 adalah konstanta, sehingga nilai harapannya konstan, yaitu: Y 0. u t adalah “white noise”, sehingga nilai harapannya = 0. Jadi: E(Y t ) = E(Y 0 + Σu t ) = E(Y 0 ) + E(Σu t ) = Y = Y 0. Dengan demikian dapat disimpulkan bahwa rata-rata random walk tanpa intersep adalah konstan.

7  Sekarang kita lihat varian-nya, yaitu: V(Y t ) = V(Y 0 + Σu t ) = V(Y 0 ) + V(Σu t ) Y 0 adalah konstanta, sehingga varian-nya = 0. u t adalah “white noise”, sehingga variannya = σ 2. Jadi: V(Y t ) = V(Y 0 + Σu t ) = V(Y 0 ) + V(Σu t ) = 0 + Σ σ 2 = t σ Random Walk dengan Intersep ( Random walk with drift) Model:Y t = Y t-1 + d + u t Pembuktian: Y 1 = Y 0 + d + u 1 Y 2 = Y 1 + d + u 2 = Y 0 + d + d + u 1 + u 2 Y t = Y 0 + t d + Σu t Dengan demikian:  E(Y t = Y 0 + t d + Σu t ) = Y 0 + t d  V(Y t = Y 0 + t d + Σu t ) = t σ 2.

8

9 Pemeriksaan Kestasioneran Data Time Series Terdapat 3 cara yang umum digunakan dalam melakukan pendugaan terhadap kestasioneran data, yaitu: 1.Melihat trend data dalam grafik 2.Menggunakan autokorelasi dan correlogram 3.Uji akar-akar unit (unit roots test) a. Uji Dickey- Fuller (DF Test) b. Uji Augmented Dickey- Fuller (ADF Test) c. Uji Philips-Perron (PP Test)

10 1. Pemeriksaan Kestasioneran dengan Trend Data Plot data yang stasioner pada nilai tengah dan varians Plot data yang tidak stasioner pada nilai tengah, tapi stasioner pada varians

11 Plot data yang stasioner pada nilai tengah, tapi tidak stasioner pada varians Plot data yang tidak stasioner pada nilai tengah maupun varians

12 Dari Plot data time series di atas dapat dilihat GDP menunjukkan tren meningkat. Ini merupakan indikasi bahwa data GDP tidak stasioner

13 2a. Pemeriksaaan Kestasioneran: Correlogram Correlogram of white noise error term u. AC = autocorrelation, PAC = partial autocorrelation, Q-Stat = Q statistic, Prob = probability.

14  Correlogram of a random walk time series. Correlogram of a random walk time series

15 Pada correlogram uji ini digambarkan dengan: garis putus-putus Kelemahan: Terkadang timbul keraguan dalam memutuskan stasioner atau tidak. Perlu uji formal  Unit Root Test

16 2b. Pemeriksaaan Kestasioneran: Uji Signifikansi Autokorelasi (ACF)

17 Uji Unit Root 1. Dickey-Fuller test  Dikenalkan oleh David Dickey dan Wayne Fuller. Perhatikan model berikut: Y t = ρ Y t-1 + ut Jika ρ = 1, maka model menjadi random walk tanpa intersep. Disini kita akan menghadapi masalah dimana varian Y t tidak stasioner. Dengan demikian Y t dapat disebut mengandung “unit root” atau data tidak stasioner. Bila persamaan diatas dikurangi pada Y t-1 sisi kanan dan kiri, maka persamaannya menjadi: Y t - Y t-1 = ρ Y t-1 - Y t-1 + u t ∆ Y t = (ρ-1) Y t-1 + u t Atau dapat ditulis dengan: (model tanpa intersep dan trend) ∆ Y t = δ Y t-1 + u t

18 H0: δ = 0 ; ada akar-akar unit (tidak stasioner) H1: δ < 0 ; tidak ada akar-akar unit (stasioner) t adalah trend deterministik β 1 adalah intersep / konstanta

19 Jadi, DF diestimasi untuk 3 bentuk random walk yang berbeda, yaitu 1.Y t random walk Y t = Y t-1 +  t 2.Y t random walk with drift Y t =  1 + Y t-1 +  t 3.Y t random walk with drift around a stochastic trend Y t =  1 +  2 t + Y t-1 +  t

20 2. Augmented Dickey-Fuller (ADF) Test. Dimana m adalah panjangnya lag yang digunakan.

21  Berdasarkan model tersebut kita dapat memilih tiga model yang akan digunakan untuk melakukan Uji ADF, yaitu: Model dengan intersep (β 1 ) dan trend (β 2 ), sebagaimana model diatas. 1.Model yang hanya intersep saja (β 1 ), yaitu: 3. Model tanpa intersep dan trend (slope), yaitu: Penghitungan manual cukup sulit  EViews

22 How…  Jika t-statistics dari koefisien  (disebut t-ADF) lebih kecil secara absolut lebih kecil secara absolut dari Critical Value McKinnon (1%, 5%, 10%), artinya tidak signifikan sehingga terima H0: ada akar-akar unit. Variabel tersebut tidak stasioner.  Jika t-statistics dari koefisien  (disebut t-ADF) lebih besar secara absolut lebih besar secara absolut dari Critical Value McKinnon (1%, 5%, 10%), artinya signifikan sehingga tolak H0:tidak ada akar-akar unit. Variabel tersebut stasioner.

23 ADF Test Statistic % Critical Value* % Critical Value % Critical Value *MacKinnon critical values for rejection of hypothesis of a unit root. Augmented Dickey-Fuller Test Equation Dependent Variable: D(ISAT) Method: Least Squares Sample(adjusted): 1/03/2002 8/16/2002 Included observations: 162 after adjusting endpoints VariableCoefficientStd. Errort-StatisticProb. ISAT(-1) D(ISAT(-1)) R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)

24 Transformasi Data Tidak Stasioner Menjadi Stasioner  Metode: pembedaan (difference). Perhatikan model berikut: Y t = β 1 + β 2 t + β 3 Y t-1 + u t Jika: β 1 = 0, β 2 = 0, dan β 3 = 1, maka modelnya menjadi: Y t = Y t-1 + u t Telah kita ketahui bahwa model tersebut adalah Random Walk tanpa intersep, yang tidak stasioner. Akan tetapi, bila model ditulis dengan: Y t - Y t-1 = u t Atau ∆ Y t = u t Sehingga, E(∆ Y t ) = 0, dan Var(∆ Y t ) = σ 2, maka model tersebut menjadi stasioner. Proses inilah yang disebut dengan proses pembedaan stasioner (differencing)

25 Jika β 1 ≠ 0, β 2 = 0, dan β 3 = 0, maka modelnya menjadi: Y t = β 1 + Y t-1 + u t Model tersebut adalah Random Walk dengan intersep, yang tidak stasioner. Bila model ditulis dengan: Y t - Y t-1 = β 1 + u t Atau ∆ Y t = β 1 + u t Maka: E(∆ Y t ) = E (β 1 + u t ) = β 1 Dan Var(∆ Y t ) = Var (β 1 + u t ) = σ 2. Kita lihat bahwa baik rata-rata maupun varian telah konstan, yang berarti ∆ Y t telah stasioner. Berarti persamaan ini juga merupakan proses pembedaan stasioner, karena ketidakstasioneran Y t dapat dieliminasi pada pembedaan pertama (first difference)

26 ADF Test Statistic % Critical Value* % Critical Value % Critical Value *MacKinnon critical values for rejection of hypothesis of a unit root. Augmented Dickey-Fuller Test Equation Dependent Variable: D(ISAT,2) Method: Least Squares Date: 09/10/04 Time: 14:25 Sample(adjusted): 1/04/2002 8/16/2002 Included observations: 161 after adjusting endpoints VariableCoefficientStd. Errort-StatisticProb. D(ISAT(-1)) D(ISAT(-1),2) R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)

27 Pemeriksaaan Kestasioneran: Uji Akar Unit (PP-Test)


Download ppt "KONSEP DAN PENGUJIAN UNIT ROOT Pertemuan 3 - Time Series SEKOLAH TINGGI ILMU STATISTIK OLEH: FITRI KARTIASIH, S.ST, S.E, M.Si."

Presentasi serupa


Iklan oleh Google