Kecerdasan Buatan #3 Logika Proposisi.

Slides:



Advertisements
Presentasi serupa
Soal Latihan 1 Diberikan pernyataan “Tidak benar bahwa dia belajar Algoritma tetapi tidak belajar Matematika”. (a)  Nyatakan pernyataan di atas dalam notasi.
Advertisements

LOGIKA MATEMATIKA Oleh BUDIHARTI, S.Si..
LOGIKA MATEMATIKA PROGRAM STUDI TEKNIK INFORMATIKA
Logika.
Oleh : LUFVIANA LIKKU TRIMINTARUM A
LOGIKA MATEMATIKA Guru mapel : Niniek wakhyu i PUSTAKA : Kenneth H Rossen, Discrete mathematics and its applications, sixth edition.
DASAR-DASAR LOGIKA Septi Fajarwati, S.Pd..
Review Proposisi & Kesamaan Logika
Bab 1 Logika Matematika Matematika Diskrit.
LOGIKA LOGIKA LOGIKA.
Tautologi dan Kontradiksi
PREDIKAT dan FUNGSI PROPOSISIONAL
MATEMATIKA DISKRIT By DIEN NOVITA.
MATEMATIKA DISKRIT By DIEN NOVITA.
PROPORSI (LOGIKA MATEMATIKA)
MATEMATIKA DISKRIT MATEMATIKA DISKRIT ADALAH CABANG MATEMATIKA YANG MEMPELAJARI OBJEK-OBJEK DISKRIT OBJEK DISKRIT ADALAH SEJUMLAH BERHINGGA ELEMEN-ELEMEN.
LOGIKA Purbandini, S.Si, M.Kom.
TOPIK 1 LOGIKA.
Logika dan Operasi Bit pada sistem Komputer
KALKULUS PREDIKAT/ KALIMAT BERKUANTOR
BAB 4 Logika Matematika Standar Kompetensi: Kompetensi Dasar:
BAB 1. LOGIKA MATEMATIK 1.1 PROPOSISI Definisi: [Proposisi]
KUANTOR DAN TEORI KUANTIFIKASI
Oleh : Siardizal, S.Pd., M.Kom
Pertemuan ke 1.
Induksi Matematika.
LOGIKA Logika mempelajari hubungan antar pernyataan-pernyataan yang berupa kalimat-kalimat atau rumus-rumus, sehingga dapat menentukan apakah suatu pernyataan.
PROPOSISI Citra N, S.Si, MT.
Matematika Diskrit Logika.
Matematika Diskrit Bab 1-logika.
Pertemuan # 2 Logika dan Pembuktian
Materi Kuliah Matematika Disktrit I Imam Suharjo
ZULFA ROHMATUL MUBAROKAH ( /4A)
Sabtu, 27 Januari 2018 Kalimat Matematika Oleh : Choirudin, M.Pd.
PROPOSITION AND NOT PROPOSITION
LogikA MATEMATIKA.
Implikasi dan Aplikasi
LOGIKA MATEMATIKA.
IMPLIKASI (Proposisi Bersyarat)
KALKULUS PREDIKAT/ KALIMAT BERKUANTOR
Grace Lusiana Beeh, S. Kom.
Metoda pembuktian matematika
TOPIK 1 LOGIKA M. A. INEKE PAKERENG, M.KOM.
ALGORITMA DAN PEMROGRAMAN
Latihan Soal Logika Matematika
TOPIK 1 LOGIKA.
Logika Matematika Bab 5: Induksi Matematika
KALKULUS PREDIKAT/ KALIMAT BERKUANTOR
QUANTIFIER (KUANTOR) dan Induksi matematika
PRESENTASI PERKULIAHAN
KALKULUS PREDIKAT/ KALIMAT BERKUANTOR
Oleh : Cipta Wahyudi, S.Kom, M.Eng, M.Si
Aljabar Logika. 1. Kalimat Deklarasi. 2. Penghubung Kalimat. 3
LOGIKA MATEMATIKA (Pernyataan Majemuk)
Logika dan Logika Matematika
Dasar dasar Matematika
Adalah cabang dari matematika yang mengkaji objek-objek diskrit.
Proposisi Lanjut Hukum Ekuivalensi Logika
LOGIKA MATEMATIKA Disusun Oleh : 2.Emi Suryani ( ) 5A4
1.1 Proposisi & Proposisi Majemuk
Proposisi Sri Nurhayati.
LOGIKA MATEMATIKA Logika matematika pada hakekatnya adalah suatu metode dalam komputasi menggunakan proposisi atau kalimat deklaratif. Kalimat deklaratif.
TOPIK 1 LOGIKA.
BAB 2 LOGIKA MATEMATIKA.
LOGIKA MATEMATIKA Logika matematika pada hakekatnya adalah suatu metode dalam komputasi menggunakan proposisi atau kalimat deklaratif. Kalimat deklaratif.
1 Logika Matematik. 2 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements).
Materi Kuliah Matematika Diskrit
Quantifier (Kuantor) dan Induksi matematika
QUANTIFIER (KUANTOR) dan Induksi matematika
LOGIKA MATEMATIKA.
Transcript presentasi:

Kecerdasan Buatan #3 Logika Proposisi

LOGIKA MATEMATIKA Mempelajari prinsip dan teknik beralasan Dasar untuk memberikan pembenaran pada matematika dan ilmu pengetahuan lainnya. 3. Mempunyai banyak penerapan praktis, diantaranya untuk : - perancangan mesin komputasi, - kecerdasan buatan, - pemrograman komputer dan - bidang lainnya pada ilmu komputer.

LOGIKA MATEMATIKA 1. Proposisi dan nilai kebenarannya 2. Ingkaran proposisi. 3. Konektivitas atau operator logika 4. Ekuivalensi logis 5. Predikat dan kuantifikasi 6. Metoda inferensi

PROPOSISI CONTOH : Semua pernyataan berikut adalah proposisi PERNYATAAN adalah kalimat deklaratif, umumnya mempunyai pola S-P-O-K PROPOSISI adalah pernyataan yang sudah dapat dipastikan benar, atau salah tetapi tidak keduanya sekaligus. NILAI KEBENARAN suatu pernyataan didasarkan pada fakta ilmiah atau kesepakatan umum. NILAI KEBENARAN : BENAR (T=True) dan SALAH (F=False). Dalam dunia digital nilai kebenaran biasanya dinyatakan oleh 1 untuk benar dan 0 untuk salah. CONTOH : Semua pernyataan berikut adalah proposisi Jakarta adalah ibukota negara Republik Indonesia Ponorogo terletak di propinsi Jawa Tengah 1 + 2 = 3 2 + 2 = 5 Proposisi 1 dan 3 bernilai benar (T) Proposisi 2 dan 4 bernilai salah (F)

CONTOH : Perhatikan kalimat berikut 1. Jam berapakah sekarang ? 2. Silahkan masuk ke ruangan ! 3. x + 2 = 3 4. x + y = z Kalimat 1 bukan pernyataan, tapi pertanyaan. Jadi ia bukan proposisi. Kalimat 2 bukan pernyataan, tapi permintaan. Jadi ia bukan proposisi. Kalimat 3 adalah pernyataan, tetapi nilai kebenarannya masih bergantung pada nilai x yang diberikan. Bila x=1 ia bernilai benar (T), namun bila x=2 ia bernilai salah (F). Karena nilai kebenarannya tidak pasti maka ia bukan proposisi. Pernyataan yang nilai kebenarannya belum pasti disebut kalimat terbuka. COBA ANALISA KALIMAT 4, KEMUDIAN SIMPULKAN APAKAH IA PROPOSISI ATAU BUKAN !

PROPOSISI INGKARAN CONTOH : NOTASI UNTUK PROPOSISI : p, q, r, s, . . . Misalkan p suatu proposisi. Proposisi yang menyatakan “bukan p” disebut NEGASI atau ingkaran dari pernyataan p, dan disimbolkan oleh . p CONTOH : PROPOSISI INGKARAN Hari ini adalah hari Senin Hari ini adalah bukan hari Senin 2 adalah bilangan genap 2 adalah bilangan ganjil 3 lebih dari 2 3 kurang dari atau sama dengan 2 INGAT : Jika suatu proposisi bernilai T maka ingkarannya bernilai F, begitu juga sebaliknya.

p p T F TABEL KEBENARAN (TB) digunakan untuk menyajikan hubungan antara nilai kebenaran sejumlah proposisi. TABEL 1 : TB untuk proposisi dan negasinya p p T F MASALAH LOGIKA 1 Pada suatu komunitas mahasiswa baru terbagi dua kelompok, yaitu kelompok pembohong yaitu mhs yang selalu berkata salah dan kelompok penjujur yaitu mhs yang selalu berkata benar.

MASALAH LOGIKA 1 (Lanjutan) Suatu ketika seorang dosen bertemu dengan tiga orang mahasiswa yang sedang duduk di tangga; sebut saja mereka dengan A, B dan C. Dosen tersebut bertanya kepada A, apakah A penjujur atau pembohong. A menjawab dengan muka tertunduk sehingga jawabannya tidak jelas. Kemudian sang dosen bertanya kepada B :”apa yang dikatakan A tadi ?” B menjawab bahwa “ A seorang penjujur”. Eh, si C nyeletuk dan menga- takan bahwa “B seorang pembohong” DAPATKAH ANDA MEMASTIKAN SIAPA PENJUJUR DAN SIAPA PEMBOHONG DIANTARA MEREKA BERTIGA ? Petunjuk : Cukup dianalisa dengan menggunakan pernyataan dan negasinya.

OPERATOR LOGIKA Proposisi p Proposisi p Proposisi p, q Proposisi r Operator logika digunakan untuk membentuk proposisi baru dari satu atau lebih proposisi yang sudah ada. Operator logika disebut juga konektivitas. BEBERAPA KONEKTIVITAS: Negasi Konjungsi Disjungsi Disjungsi eksklusif Implikasi Implikasi dua arah

p q disebut konjungsi dari p dan q. p q p q T F DEFINISI : Misalkan p dan q adalah proposisi. Proposi “p dan q” ditulis p q adalah proposisi yang bernilai benar jika kedua p dan q benar dan bernilai salah untuk kasus lainnya. Proposisi p q disebut konjungsi dari p dan q. TABEL 2 : TB Konjungsi p q p q T F

CONTOH : 1. Misalkan p : Hari ini Jumat, q : Hari ini hujan. maka p q : Hari ini Jumat dan hujan. Bagaimana nilai kebenarannya. Sangat tentatif, tergan- tung pada keadaan disaat pernyataan ini diungkapkan. 2. Misalkan p : Ada 7 hari dalam seminggu, q : 2+2 = 4, maka p q : Ada 7 hari dalam seminggu dan 2+2 = 4. Proposisi ini yang bernilai benar.

DISJUNGSI DEFINISI : Misalkan p dan q adalah proposisi. Proposi “p atau q” ditulis p q adalah proposisi yang bernilai salah jika kedua p dan q salah dan bernilai benar untuk kasus lainnya. TABEL 3. TB Disjungsi p q p q T F

CONTOH : Diperhatikan proposisi berikut : “Mahasiswa yang sudah mengambil kuliah kalkulus atau kuliah algoritma pemrograman boleh mengambil kuliah metoda numerik. Sesungguhnya kita mempunyai bentuk disjungsi p q, dimana p : Mhs yang sudah kuliah kalkulus boleh ambil numerik q : Mhs yang sudah ambil algoritma boleh ambil numerik Beberapa kemungkinan mhs yang boleh ambil numerik : Mhs yang sudah mengambil kuliah kalkulus saja Mhs yang sudah mengambil kuliah algoritma saja Mhs yang sudah mengambil keduanya.

EKSKLUSIF OR (XOR) p q p q T F DEFINISI : Misalkan p dan q adalah proposisi. Proposisi “salah satu p atau q” ditulis p q adalah proposisi yang bernilai benar jika tepat satu diantara p atau q BENAR, dan bernilai salah untuk kasus lainnya. TABEL 4 : TB Eksklusif OR p q p q T F

IMPLIKASI DEFINISI : Misalkan p dan q adalah proposisi. Proposi “jika p maka q” ditulis p q adalah proposisi yang bernilai salah jika p benar tetapi q salah dan bernilai benar untuk kasus lainnya. TABEL 5. TB Impilkasi p q p q T F

IMPLIKASI (Lanjutan) p q p q T F PENYEBUTAN LAIN UNTUK p q : Diperhatikan TB implikasi : apapun nilai kebenaran q, asalkan p bernilai salah maka implikasinya bernilai benar. PENYEBUTAN LAIN UNTUK p q : p berimplikasi q p berakibat q q hanya jika p p adalah syarat cukup q q adalah syarat perlu p

Contoh menarik Misalkan p : soal ujian yang diberikan oleh guru q : jawaban yang diberikan oleh siswa Nilai kebenaran dari p q diilustrasikan sbg penilaian guru : Bila soal ujian benar, jawaban juga benar maka nilainya lulus Bila soal ujian benar, jawaban salah maka nilainya harus gagal Bila soal ujiannya salah, dijawab benar maka nilainya lulus Bila soal ujiannya salah, dijawab salah maka nilainya lulus. CONTOH : Diperhatikan kalimat implikasi berikut : “Jika belanja anda melebihi 1 juta rupiah maka akan diberikan diskon 2%.” Toko hanya memberikan perlakuan terhadap pelanggan dengan nilai belanja melebihi 1 juta tetapi tidak membahas belanja yang kurang dari 1 juta rupiah. CONTOH : “Jika hari ini Senin maka 2 + 3 = 5” merupakan proposisi yang benar walaupun kedua proposisi aslinya tidak ber- hubungan.

Dalam pemrograman komputer Bentuk Jika …. Maka Dalam pemrograman komputer Diperhatikan pernyataan berikut : “Jika x < 3 maka x = x + 1” Bila sebelum pernyataan ini diberikan x = 2 maka akan dihasilkan nilai x yang baru, yaitu x = 2 + 1 = 3 Bila sebelumnya diberikan x = 4 maka tidak ada pembaharuan (updating) nilai x. Hasilnya tetap, yaitu x = 4. Coba analisa pernyataan berikut : “Jika 2+2=4 maka x = x^2+1”. Berapa hasilnya jika diberikan x=1, 2, 4. Dalam banyak pemrograman komputer, bentuk “jika … maka” biasanya muncul dalam bentuk berlapis, seperti “jika ……(jika…..(jika …..maka.…)…..maka)….maka….”

BI-IMPLIKASI DEFINISI : Misalkan p dan q adalah proposisi. Proposi “p jika hanya jika q” ditulis p q adalah proposisi yang bernilai benar jika p dan q keduanya benar atau keduanya bernilai salah. TABEL 6. TB bi-Implikasi p q p q T F

Masalah praktis Logika Dikarenakan masalah mesin, sang pilot membuat pendaratan darurat di pantai suatu pulau terpecil. Pulau ini didiami oleh 2 kelompok, katakan saja kelompok bangsawan yang selalu berkata jujur dan kelompok awam yang selalu berkata bohong. Sang pilot memutuskan menuju kota untuk mencari bantuan tapi tidak tahu harus ke arah mana. Ketika sedang berjalan sendiri sampai di suatu persimpangan (ada jalan ke kiri dan jalan ke kanan), dan bertemu dua orang, katakan A dan B. Sang pilot bertanya pada A tentang jalan mana yang harus diambil agar sampai di kota. Si A menjawab sbb : “kota ada di gunung, atau jalan ke kanan menuju kota”. Berbeda dengan A, Si B memberikan statmen “kota ada di gunung, dan jalan ke kanan menuju kota”. Sambil mengangkat bahu, si A mengatakan bahwa “si B pembohong”. Selanjutnya si B memberikan argumentasi dalam pernyataan berikut “jika kota ada di gunung maka jalan ke kanan menuju kota”. Dapatkah sang pilot mengambil jalan yang benar ? Bagaimana?

Penterjemahan bahasa Indonesia Kedalam bentuk Logika Contoh 1: Anda dapat mengakses internet dari kampus hanya jika anda jurusan informatika atau anda bukan mhs baru. Penyelesaian : ada banyak cara untuk menyajikan klm ini dalam bentuk logika, salah satunya sbb: Misalkan p : anda dapat mengakses internet dari kampus q : anda mahasiswa jurusan informatika r : anda mahasiswa baru Maka kalimat di atas dapat disajikan dalam simbol logika sbb : q ( r ) p Contoh 2 : Anda tidak diperbolehkan naik roller coaster jika tinggi anda Kurang dari 120 cm, kecuali anda sudah berumur di atas 15 tahun. Untuk latihan, coba ubah ke simbol logika.

Logika dan Operasi Bit pada sistem Komputer Bit berupa angka 1 dan 0. String merupakan barisan atau susunan beberapa bit. Komputer menggunakan sistem basis dua, yaitu ia menyajikan informasi dengan mengguna- kan bit 1 dan 0. Bit 1 digunakan untuk menyakjikan nilai benar (T), dan bit 0 digunakan untuk menyajikan nilai salah (F). Operasi bit berupa konektivitas pada logika, yaitu : : “dan”, : “atau”, : ekslusif OR Dua string dapat dioperasikan jika mereka mempunyai panjang yang sama.

pada sistem Komputer (Lanjutan) Logika dan Operasi Bit pada sistem Komputer (Lanjutan) CONTOH : Diberikan dua string x dan y sbb : x = 01 1011 0110 dan y = 11 0001 1101. Tentukan hasil dari x y, x y dan x y. PENYELESAIAN : x = 01 1011 0110 x = 01 1011 0110 y = 11 0001 1101 y = 11 0001 1101 x y = 01 0001 0100 x y = 11 1011 1111 x = 01 1011 0110 y = 11 0001 1101 x y = 10 1010 1011

Konvers, invers dan kontraposisi Diperhatikan implikasi p q : Konvers : q p Invers : p q Kontraposisi : q p Coba buat tabel kebenaran untuk konjungsi, disjungsi, XOR, implikasi, konvers, invers dan kontraposisi. Selidikilah apa saja pasangan pro- posisi yang mempunyai nilai kebenaran yang sama. EKUIVALENSI PROPOSISI

Tautologi dan Kontradiksi Gabungan dua proposisi yang selalu bernilai benar, tidak bergantung pada nilai kebenaran masing-masing propo- sisi disebut tautologi. Gabungan dua proposisi yang selalu bernilai salah, tidak Sisi disebut kontradiksi. Contoh : p p : Tautologi p p : Kontradiksi Besok akan turun hujun atau tidak turun hujan tautologi 2 adalah bilangan genap dan bilangan ganjil kontradiksi

EKUIVALEN LOGIS DEFINISI : Dua proposisi m dan n dikatakan ekuivalen logis jika m n merupakan suatu tautologi. Notasi m n : untuk menyatakan bahwa m dan n ekuivalen secara logis. CONTOH : 1. implikasi p q ekuivalen logis dengan kontraposisinya 2. (p q) p q Bukti : Gunakan tabel kebenaran. Berikut untuk contoh 1, contoh 2 diberikan sebagai latihan.

p q p q q p T F sama Dalam penerapannya, kebenaran proposisi yang berupa implikasi kadangkala dibuktikan melalui kontraposisinya.

BEBERAPA BENTUK EKUIVALENSI LOGIS Misalkan T proposisi yang selalu bernilai benar dan F propoisi Yang selalu bernilai salah. Hukum Identitas : p T p dan p F p Hukum Dominasi : p T T dan p F F Hukum Idempoten : p p p dan p p p Hukum negasi ganda : ( p) p Hukum Komutatif : p q q p dan p q q p Hukum Asosiatif : (p q) r p (q r) (p q) r p (q r) 7. Hukum Distributif : p (q r) (p q) (p r) p (q r) (p q) (p r) 8. Hukum De Morgan : (p q) p q (p q) p q

PREDIKAT dan FUNGSI PROPOSISIONAL Diperhatikan kalimat yang memuat variabel “x < 2”. Subjek : x Predikat : kurang dari 2 Pernyataan “x kurang dari 2” dinyatakan dengan P(x), dimana P merujuk sifat “kurang dari 2” dan x variabel. P disebut juga fungsi proposisional dimana P(x) adalah nilai fungsi P di x. Nilai P(x) hanya dua macam, yaitu benar (T) atau salah (F). CONTOH : Bila P(x) : x < 2 maka P(1) benar, P(2) salah, P(3/2) benar, dst Fungsi proposisional dengan beberapa varibel : Q(x,y) : x^2 + y^2 = 25 Q(3,4), Q(4,3) bernilai benar, Q(1,2), Q(5,3) salah, dst.

Contoh penggunaan fungsi proposisional pada program komputer Misalkan perintah berikut : “ jika x > 0 maka x = x+1” dimasukkan pada suatu program. Fungsi proposisi P(x): x >0. Bila P(x) benar maka perintah x = x + 1 dieksekusi, tetapi bila P(x) salah maka nilai x yang dimasukkan tidak berubah. x = 1 P(1) benar x = 1 + 1 = 2 x = 0 P(0) salah x = 0

KUANTOR Misalkan P(x) suatu fungsi proposisional, x berasal dari suatu domain yang disebut semesta pembicaraan. DEFINISI : Kuantifikasi universal adalah proposisi sbb : “P(x) bernilai benar untuk setiap x dalam semesta pembicaraan” ditulis x, P(x). Notasi disebut kuantor universal. CONTOH : Nyatakan kalimat berikut dalam kuantifikasi universal “semua mhs di kelas ini mengambil kuliah kalkulus” Penyelesaian : Misal P(x) : x mengambil kuliah kalkulus, x varibel mhs. di kelas ini Diperoleh x, P(x). Bentuk lainnya : misalkan S(x): x yang ada di kelas ini, maka pernyataan Di atas dapat juga disajikan sebagai x, [ S(x) P(x)]

KUANTOR (Lanjutan) DEFINISI : Kuantifikasi eksistensial adalah proposisi sbb : “Terdapat x dalam semesta pembicaraan sehingga P(x) bernilai benar” ditulis x, P(x). Notasi disebut kuantor eksistensial. Pengertian “terdapat” berarti paling tidak ada satu x dalam semesta Pembicaraan sehingga P(x) benar. CONTOH : Diberikan pernyataan P(x): x^2 = 1. Tentukan nilai kebenaran x, P(x). Penyelesaian : Karena x = 1 dan x = -1 membuat persamaan x^2 = 1 benar maka kuantifikasi eksistensial ini bernilai benar. Bila Q(x,y) : x^2+y^2 < 0 maka kuantifikasi eksistensial (x,y), Q(x,y) benilai salah, sebab tidak ada x dan y yang memenuhi.

NILAI KEBENARAN KUANTOR BENAR SALAH x, P(x) PERNYATAAN BENAR SALAH x, P(x) P(x) bernilai benar untuk setiap nilai x di dalam semesta pembicaraan Ada x di dalam semesta sehingga P(x) bernilai salah. Ada x di dalam semesta (minmal satu) sehingga P(x) bernilai benar P(x) bernilai salah untuk setiap x di dalam semesta pembicaraan Tabel ini dapat dikembangkan untuk fungsi propo- sisional yang terdiri dari beberapa variabel. LATIHAN : Coba buat tabel yang sama untuk fungsi proposisional P(x,y).

KAPAN KUANTOR BERNILAI BENAR, SALAH ? (Lanjutan) Misalkan  : himpunan bilangan bulat positif yang tidak lebih dari 4 sebagai semesta pembicaraan. Pernyataan P(x) didefinisikan sebagai “x^2 > 10”. Selidikilah kebenaran kuantor x, P(x). PENYELESAIAN :  = {1, 2, 3, 4 } untuk x = 1 diperoleh pernyataan 1 > 10 (salah) untuk x = 2 diperoleh pernyataan 4 > 10 (salah) untuk x = 3 diperoleh pernyataan 9 > 10 (salah) untuk x = 4 diperoleh pernyataan 16 > 10 (benar) Karena ada x di dalam semesta pembicaraan yang membuat P(x) benar maka kuantor ini bernilai benar. Catatan : Bila semesta pembicaraan tidak dinyatakan secara eksplisit maka ia dianggap sebagai semua bilangan real. LATIHAN : Misalkan P(x) : x^2 > 0. Selidikilah kebenaran kuantor berikut x, P(x)

KE DALAM BAHASA INDONESIA TERJEMAHAN KUANTOR KE DALAM BAHASA INDONESIA LANGKAH-LANGKAH : Tulis makna dari setiap kuantor Sajikan makna ini dalam kalimat sederhana (mudah dimengerti) CONTOH : Misalkan x, y variabel untuk mahasiswa di kampus ini. C(x) : x mempunyai komputer, F(x,y) : x dan y berteman. Nyatakan ke dalam bahasa Indonesia kuantor berikut : ∀x ( C(x) ∨ ∃y ( C(y) ∧ F(x,y) )) PENYELESAIAN : Setiap mahasiswa x di kampus ini memiliki komputer, atau ada mahasiswa lainnya y, dimana x dan y berteman. LATIHAN : untuk fungsi C dan F sama seperti di atas, terjemahkan kuantor berikut ke dalam bahasa Indonesia ∃x ∀y ∀z ( (F(x,y) ∧ F(x,z) ∧ (y ≠ z) ) → ¬ F(y,z) ) )

TERJEMAHAN BAHASA INDONESIA KE DALAM SIMBOL KUANTOR CONTOH : Sajikan kalimat berikut dalam bentuk kuantor ! 1. Beberapa mhs dalam kelas ini pernah datang ke Jakarta 2. Setiap mhs dalam kelas ini pernah datang ke Surabaya atau Jakarta. PENYELESAIAN : Misalkan J(x) : x pernah datang ke Jkt, S(x) : x pernah datang ke Sby. Maka kalimat di atas dapat disajikan dalam kuantor berikut : 1. ∃ x, P(x) , 2. ∀x ( J(x) ∨ S(x) ). LATIHAN : Nyatakan kalimat berikut dalam bentuk kuantor Setiap mhs dalam kelas ini mempunyai tepat satu teman dekat Jika ada seseorang wanita dan ia pernah melahirkan maka pasti ia merupakan ibu dari seseorang. 3. Selalu terdapat wanita dalam setiap penerbangan di dunia ini 4. Ada mahasiswa yang tidak pernah belajar tapi mendapat gelar sarjana