UKURAN PENYEBARAN DATA

Slides:



Advertisements
Presentasi serupa
UKURAN PENYEBARAN DATA
Advertisements

KELOMPOK 3 Nama Anggota : Fahmi Aldy Rivaldi Gusti. F Puji Hariyanti
Ukuran Variasi atau Dispersi
BAB VI UKURAN VARIASI ATAU DISPERSI (Pengukuran Dispersi) (Pertemuan ke-8) Oleh: Andri Wijaya, S.Pd., S.Psi., M.T.I. Program Studi Sistem Informasi Sekolah.
Ukuran Penyimpangan (Dispersi)
Ukuran Variasi atau Dispersi
UKURAN TENDENSI SENTRAL DAN PENYIMPANGAN
Ukuran Dispersi.
UKURAN PENYEBARAN (DISPERSI)
UKURAN DISPERSI Presented by Astuti Mahardika, M.Pd.
UKURAN PENYEBARAN DATA
1. Statistika dan Statistik
Nilai - Nilai Variasi Prepared: TOTOK SUBAGYO, ST,MM.
UKURAN PENYEBARAN DATA BERKELOMPOK
UKURAN PENYEBARAN DATA TUNGGAL
Oleh: Indah Puspita Sari, M.Pd.
Assalamu’alaikum Wr. Wb.
UKURAN PENYEBARAN DATA
UKURAN PENYEBARAN (VARIABILITAS)
S T A T I S T I K Matematika SMK Kelas/Semester: III/1
jumlah bilangan-bilangan dibagi oleh banyaknya bilangan.
UKURAN PENYEBARAN DATA
NURRATRI KURNIA SARI, M.Pd
UKURAN PEMUSATAN DATA Sub Judul.
UKURAN VARIASI ATAU DISPERSI (Pengukuran Dispersi)
Ukuran Variabilitas Data
BAB 6 UKURAN DISPERSI.
Statistitik Pertemuan ke-5/6
BAB 5 UKURAN NILAI PUSAT.
Statistika Pertemuan ke – 8 dan ke – 9.
Alwino Zacqy ( ) Ide Primayu R ( )
STATISTIKA.
UKURAN PENYEBARAN DATA
UKURAN SIMPANGAN, DISPERSI & VARIASI
Ukuran Penyebaran Data
Probabilitas dan Statistika
LOADING.
Modul 5 Kegiatan Belajar 2
STATISTIKA DESKRIPTIF
LOADING.
jumlah bilangan-bilangan dibagi oleh banyaknya bilangan.
Contoh soal Jangkauan (data belum dikelompokkan):
Ukuran Penyebaran Data
UKURAN PENYEBARAN Ukuran Penyebaran
NURRATRI KURNIA SARI, M.Pd
Profil Web Materi Ms. Excel Kesimpulan Penutup.
STATISTIKA Pertemuan 3: Ukuran Pemusatan dan Penyebaran
Ukuran Pemusatan Data Choirudin, M.Pd
Ukuran Pemusatan Data Choirudin, M.Pd
UKURAN PENYEBARAN DATA
Assalamu’alaikum Wr. Wb.
UKURAN PENYEBARAN Adalah suatu ukuran untuk mengetahui seberapa besar penyimpangan data dengan nilai rata rata hitungnya.
UKURAN PENYEBARAN DATA
Nama : Novi Antika Lestari Kelas : 11.2A.04 NIM :
SELAMAT DATANG.
LOADING.
Ukuran Variasi atau Dispersi
UKURAN VARIASI ATAU DISPERSI (Pengukuran Dispersi)
1.JAUHARI MALIK ( ) 2.ADI WINARNI ( ) 3.MUKHTAROM ( ) MULAI PRESENTASI.
UKURAN LETAK & KERAGAMAN
UKURAN PENYEBARAN.
TEKNIK INFORMATIKA UNIVERSITAS ATMA JAYA YOGYAKARTA
UKURAN PENYEBARAN DATA
PENGUKURAN DISPERSI, KEMIRINGAN, DAN KERUNCINGAN DISTRIBUSI DATA
PENGUKURAN DISPERSI, KEMIRINGAN, DAN KERUNCINGAN DISTRIBUSI DATA
S T A T I S T I K Matematika SMK Persiapan Ujian Nasional Kelas/Semester: III/1.
DASAR-DASAR STATISTIKA
Contoh soal Jangkauan (data belum dikelompokkan):
UKURAN VARIASI (DISPERSI )
Rata-rata bunga bank 11,43% per tahun, namun kisaran bunga antar bank dari 7,5% - 12,75% Rata-rata inflasi Indonesia sebesar 18,2% dengan kisaran antara.
Transcript presentasi:

UKURAN PENYEBARAN DATA

Ukuran penyebaran data adalah suatu ukuran yang menyatakan seberapa besar nilai-nilai data berbeda atau bervariasi dengan nilai ukuran pusatnya atau seberapa besar penyimpangan nilai-nilai data dengan nilai pusatnya.

Jangkauan (range) terdapat dalam data. Jangkauan dapat dihitung dengan Jangkauan adalah selisih antara nilai maksimum dan nilai minimum yang terdapat dalam data. Jangkauan dapat dihitung dengan rumus: R = X maks – X min

Contoh : Tentukan range dari data : 10,6,8,2,4 Jawab : R = Xmaks – Xmin = 10 – 2 = 8

Simpangan Rata-rata sekumpulan bilangan adalah: Simpangan rata-rata dari sekumpulan bilangan adalah: nilai rata-rata hitung harga mutlak simpangan-simpangannya.

a. Data tunggal SR = Contoh : Nilai ulangan matamatika dari 6 siswa adalah : 7,5,6,3,8,7.Tentukan simpangan rata-ratanya!

Jawab: = = 6 SR = = = 1,33

Data berbobot / data kelompok SR = x = data ke-i (data berbobot ) = titik tengah kelas interval ke-i (data kelompok ) f = frekuensi

Contoh : Tentukan simpangan dari data berikut : Data f x f.x 3-5 6-8 9-11 12-14 2 4 8 6 7 10 13 28 80 78 5,7 2,7 0,3 3,3 11,4 10,8 2,4 19,8 Jumlah 20 194 44,4

= = = 9,7 SR = = = 2,22

Simpangan Standar / standar deviasi Simpangan standar (S) dari sekumpulan bilangan adalah akar dari jumlah deviasi kuadrat dari bilangan-bilangan tersebut dibagi dengan banyaknya bilangan atau akar dari rata-rata deviasi kuadrat.

a. Data tunggal S = atau S =

Contoh : Tentukan simpangan baku dari data : 2,3,5,8,7. Jawab : = = 5

S = = x 2 3 5 8 7 -3 -2 9 4 26

2. Data berbobot / berkelompok S = atau S =

Contoh: Data f x f.x x2 f.x2 3-5 6-8 9-11 12-14 2 4 8 6 7 10 13 28 80 Tentukan standar deviasi dari data berikut Data f x f.x x2 f.x2 3-5 6-8 9-11 12-14 2 4 8 6 7 10 13 28 80 78 16 49 100 169 32 196 800 1014 Jumlah 20 198 2024

S = = = = 2,83

Kuartil Q1 Q2 Q3 Kuartil adalah nilai yang membagi kelompok data atas empat bagian yang sama setelah bilangan-bilangan itu diurutkan. Dengan garis bilangan letak kuartil dapat Ditunjukkan sebagai berikut: Q1 Q2 Q3

Menentukan nilai Kuartil a. Data tunggal / berbobot Letak kuartil : Qi = data ke – dengan i = 1,2,3

Hasil pendataan usia, dari 12 anak balita Contoh : Hasil pendataan usia, dari 12 anak balita (dalam tahun) diketahui sebagai berikut 4,3,4,4,2,1,1,2,1,3,3,4 , tentukan : a. Kuartil bawah (Q1) b. Kuartil tengah (Q2) c. Kuartil atas (Q3)

Jawab : Data diurutkan : 1,1,1,2,2,3,3,3,4,4,4,4 a.Letak Q1 = data ke – = data ke- 3

Nilai Q1 = data ke-3 + (data ke4 – = 1 + (2 – 1) = 1

b. Letak Q2 = data ke = data ke 6 Nilai Q2 = data ke 6 + (data ke7 – = 3 + (3 – 3) = 3

c. Letak Q3 = data ke = data ke 9 Nilai Q3 = data ke 9 + = 4 + (4 – 4)

Jangkauan Semi Inter Kuartil / Simpangan Kuartil (Qd) didefinisikan sebagai berikut: Qd = (Q3 – Q1)

b. Data Kelompok Nilai Qi = b + p dengan i = 1,2,3 b = tepi bawah kelas Qi p = panjang kelas F = jumlah frekuensi sebelum kelas Qi f = frekuensi kelas Qi n = jumlah data

Contoh : Tentukan simpangan kuartil dari data : Nilai f 45-49 50-54 55-59 60-64 65-69 70-74 3 6 10 12 5 4 Jumlah 40

Jawab : Untuk menentukan Q1 kita perlu = x 40 data atau 10 data, jadi Q1 terletak pada kelas inter- val ke-3. Dengan b = 54,5; p = 5; F = 9; f = 10 Nilai Q1 = 54,5 + 5 = 54,5 + 5 = 55

Untuk menetukan Q3 diperlukan = x 40 data atau 30 data,jadi Q3 terletak pada kelas interval ke-4, dengan b = 59,5; p = 5; F = 19 ; f = 12 Nilai Q3 = 59,5 + 5 = 59,5 + 5 = 59,5 + 4,58 = 64,08

Jadi, jangkauan semi interkuartil atau simpangan kuartil dari data di atas adalah Qd = (Q3 –Q1) = (64,08 – 55) = 4,54

Persentil adalah nilai yang membagi kelompok Persentil dari sekumpulan bilangan adalah nilai yang membagi kelompok bilangan tersebut atas 100 bagian yang sama banyaknya setelah bilangan - bilangan tersebut diurutkan dari yang terkecil sampai yang terbesar.

a. Data tunggal / berbobot Letak Pi = data ke dengan i = 1,2,…,99 Contoh : Diketahui data : 9,3,8,4,5,6,8,7,5,7 Tentukan P20 dan P70

Jawab : Data diurutkan : 3,4,5,5,6,7,7,8,8,9 Letak P20 = data ke = data ke 2 Nilai P20 = data ke 2 + (data ke 3 –data ke2) = 4 + (5 – 4) = 4

Letak P70 = data ke = data ke 7 Nilai P70 = data ke 7 + (data ke8 - data ke7) = 7 + ( 8 – 7 ) = 7

b. Data kelompok Nilai Pi = b + p , dengan i = 1,2,..,99 Jangkauan Persenti = P90 – P10

Contoh : Tentukan Jangkauan persentil dari data berikut : Nilai F 50-59 60-69 70-79 80-89 90-99 7 10 15 12 6 Jumlah 50

Untuk menentukan P10 diperlukan = Jawab : Untuk menentukan P10 diperlukan = x 50 data = 5 data, artinya P10 terletak pada kelas interval pertama dengan b = 49,5 ; p = 10 ; F =0 ; f = 7 Nilai P10 = 49,5 + 10 = 49,5 + 7,14 = 56,64

Untuk menetukan P90 diperlukan = x 50 dt = 45 data, artinya P90 terletak pada kelas interval ke 5, dengan b = 89,5; F = 44; f = 6. Nilai P90 = 89,5 + 10 = 89,5 + 1,67 = 91,17

Jangkauan Persentil = P90 – P10 = 91,17 – 56,64 = 34,53

Latihan: 1. Nilai tes matematika dari 5 orang siswa adalah sebagai berikut : 7,6,7,8,7 besarnya simpangan rata-rata dari data tesebut adalah….

Jawab : = = 7 SR = = = 0,4 x 7 6 8 1 Jml 2

2. Standar deviasi (simpangan baku) dari data 4,6,7,6,3,4 adalah… Jawab : = = 5 x (x- ) (x- )2 4 6 7 3 -1 1 2 -2 Jml 12

S = = =

3. Hasil tes penerimaan pegawai baru suatu perusahaan tercatat sebagai berikut : Nilai Frekuensi 30-39 40-49 50-59 60-69 70-79 80-89 90-99 3 8 10 20 18 14 7

Jika perusahaan akan menerima 75% dari pendaftar yang mengikuti tes tersebut, berapakah nilai minimum yang dapat diterima?

Untuk menentukan Q1 diperlukan ¼ x 80 data = Jawab : Q1 75% Untuk menentukan Q1 diperlukan ¼ x 80 data = 20 data, artinya Q1 terletak pada kelas interval ke 3, dengan b = 49,5; p = 10; F = 11; f = 10;

Nilai Q1 = 49,5 + 10 = 49,5 + 10 = 58,5

4. Hasil ulangan program diklat akuntansi dari 50 siswa kelas III pada salah satu SMK adalah sebagai berikut: Tentukan nilai P40 dari data tersebut! Nilai F 50-59 60-69 70-79 80-89 90-99 7 10 15 12 6

Jawab: Untuk menentukan P40 diperlukan = x 50 dt atau 20 data, artinya P40 terletak pada kelas interval kedua, dengan b = 69,5 ; p = 10 ; F = 17 dan f = 15.

Nilai P40 = 69,5 + 10 = 69,5 + 10 = 72,5

5. Hasil tes pelajaran Matematika 15 orang siswa adalah sebagai berikut : 30,45,50,55,50,60,60,65,85,70,75,55, 60,35,30. Jangkauan semi interkuartil (Qd) dari data di atas adalah…..

Data diurutkan : 30,30,35,45,50,50,55,55,60, 60,60,65,70,75,85. Letak Q1 = data ke = data ke-4 Nilai Q1 = data ke-4 = 45 Letak Q3 = data ke = data ke-12

Jangkauan semi interkuartil (Qd): ( Q3 – Q1 ) = ( 65 – 45 ) = 10 Nilai Q3 = data ke-12 = 65 Jangkauan semi interkuartil (Qd): ( Q3 – Q1 ) = ( 65 – 45 ) = 10

SELAMAT BELAJAR