Perhitungan dalam Perencanaan Kapal

Slides:



Advertisements
Presentasi serupa
Matematika SMK INTEGRAL Kelas/Semester: III/5 Persiapan Ujian Nasional.
Advertisements

TURUNAN FUNGSI ALJABAR
Mathematics III TS 4353 Class B
Bilangan Real ® Bil. Rasional (Q)
Created by: Capt. Hadi Supriyono, Sp.1, MM Dedicated to: PIP Makassar1 Tchebycheff’s Rule Untuk menghitung luas area yang dibatasi oleh garis lurus dan.
Integral tak tentu Kelas XII - IPS.
BAHAN AJAR KALKULUS INTEGRAL Oleh: ENDANG LISTYANI PERSAMAAN DIFERENSIAL Masalah: Tentukanlah persamaan suatu kurva y= f(x) yang melalui titik (1,3) dan.
INTEGRAL RANGKAP INTEGRAL GANDA
7. APLIKASI INTEGRAL MA1114 KALKULUS I.
Tentang Assalamuallaikum Warrahmatullahi Wabarakatu
Selamat Datang & Selamat Memahami
MODUL VI : PENERAPAN INTEGRAL
PENGGUNAAN INTEGRAL TERTENTU
Integrasi Numerik (Bag. 2)
“ Integral ” Media Pembelajaran Matematika Berbasis
ITK-121 KALKULUS I 3 SKS Dicky Dermawan
KALKULUS II By DIEN NOVITA.
INTEGRASI NUMERIK.
ITK-121 KALKULUS I 3 SKS Dicky Dermawan
PENERAPAN DIFFERENSIASI
INTEGRASI NUMERIS Integral Reimann sebuah fungsi
INDEFINITE INTEGRAL DEFINITE INTEGRAL
PENERAPAN DIFFERENSIASI PERSAMAAN GARIS SINGGUNG
MATEMATIKA KELAS XII SEMESTER GANJIL
PENERAPAN DIFFERENSIASI
FEB 2006Univ. INDONUSA Esa Unggul INF-226 Pertemuan 10 Tujuan Instruksional Umum : Integrasi Numerik Tujuan Instruksional Khusus : Mahasiswa mampu mencari.
INTEGRATION Pengertian Integral Calculus Aturan Trapezoidal
Nama : Skolastika L.K Kelas : XII-S3 Absen : 31
1. PENDAHULUAN.
KEGIATAN INTI.
INTEGRAL TENTU DAN PENERAPANNYA
Terapan Integral Lipat Dua
Pertemuan 4 Momen Inersia
Macam-Macam Bangun Ruang
Terapan Integral Lipat Dua
1. PENDAHULUAN.
IV. INTEGRAL IV. INTEGRAL 4.1. PENGERTIAN 4.2. ATURAN TRAPESIUM
Engineering Mechanic Pertemuan Ke - 6. Titik Berat dan Momen Inersia Titik berat atau pusat suatu luasan adalah suatu titik dimana luasan terkonsentrasi.
METODE NUMERIK Integrasi Numerik
6. INTEGRAL.
Formula Integrasi Newton-Cotes
Integral garis suatu lintasan
LUAS & VOLUME Bentuk Bidang Datar Letak titik berat benda
Integrasi numerik (tugas komputasi teknik & simulasi)
INTEGRATION Pengertian Integral Calculus Aturan Trapezoidal
KINEMATIKA DAN DINAMIKA TEKNIK (3 SKS)
Integral Lipat Dua   PERTEMUAN TGL b R n
Aplikasi Integral Lipat dua dan Lipat Tiga Pertemuan 10, 11, & 12
PENERAPAN INTEGRAL LIPAT DUA PELAKSANA MATA KULIAH UMUM (PAMU)
Integral metode trapezoidal
Gaya Efektif pada Tiang Kapal Layar
INTEGRAL NUMERIK Merupakan limit suatu jumlah luas sampai diperoleh suatu ketelitian yang diijinkan. Contoh : Evaluasi suatu integral dari suatu fungsi.
Pertemuan 10 Tujuan Instruksional Umum : Integrasi Numerik
BAB 2 INTEGRAL LIPAT.
INTEGRAL LIPAT DUA: Bentuk Umum :
METODE NUMERIK INTEGRAL NUMERIK.
Approximate Integration
Matematika Kelas X Semester 1
Terapan Integral Lipat Dua
Fungsi Penerapan fungsi dalam bidang pertanian merupakan bagian yang sangat penting untuk dipelajari, karena model-model dalam matematika biasa disajikan.
Integral Lipat Dua
ASSALAMUALAIKUM WR.WB..
15 Kalkulus Yulius Eka Agung Seputra,ST,MSi. FASILKOM
Sifat Sifat Bilangan Real
Gunawan.ST.,MT - STMIK-BPN
INTEGRATION Pengertian Integral Calculus Aturan Trapezoidal
C. Persamaan Garis Singgung Kurva
7. APLIKASI INTEGRAL.
C. Persamaan Garis Singgung Kurva
INTEGRAL RANGKAP INTEGRAL GANDA
Transcript presentasi:

Perhitungan dalam Perencanaan Kapal Ronald M H, S. T., M. T.

Outline Kuliah introduction Menjelaskan metode perhitungan luasan yang digunakan dalam kapal Menurunkan rumus trapezoidal rule serta menyelesaikan contoh soal yang berhubungan dengan rumus trapezoidal rule trapezoidal Menurunkan rumus ordinat antara serta menyelesaikan contoh soal yang berhubungan dengan rumus ordinat antara Ordinat antara Menurunkan rumus simpson first rule serta menyelesaikan contoh soal yang berhubungan dengan rumus Simpson first rule Simpson ‘1 rule Menurunkan rumus simpson second rule serta menyelesaikan contoh soal yang berhubungan dengan rumus Simpson second rule Simpson ‘2 rule Menurunkan rumus Simpson 3( 5 8 -1) rule serta menyelesaikan contoh soal yang berhubungan dengan rumus 5 8 -1 rule. Simpson 3 Rule Apabila waktu mencukupi, soal latihan dikerjakan di dalam kelas, tetapi bila tidak dikerjakan di rumah latihan

Introduction Hampir semua perhitungan dalam perencanaan kapal memerlukan sejumlah pengukuran seperti luasan, momen luasan dan momen inersia. Luasan umumnya dibatasi oleh garis lurus dan sebuah kurva yang biasanya smooth. Namun, kurva tersebut bukan dalam bentuk persamaan yang memiliki persamaan kurva, sehingga tidak mungkin mengetahui besar luasan dengan menggunakan intergral matematika biasa. Penyelesaian perhitungan kurva tanpa memiliki persamaan matematis dilakukan dengan pendekatan aritmatika dengan membagi kurva dalam bentuk partisi-partisi atau elemen-elemen dan akhirnya kemudian dilakukan integrasi. L = Panjang Kapal N =Jumlah Ordinat N – 1=Jumlah Interval Jarak Interval = h = kecuali untuk aturan ordinat rata-rata yaitu Ujung-ujung Ordinat Y1 dan YN

Trapezoidal Rule Luas Trapesium adalah: ; y1 y2 h Luas Trapesium adalah: . Aturan trapezoidal menjelaskan kurva yang diletakkan antara dua ordinat yang berurutan Y1 , Y2 dan lain-lain, dapat diganti dengan garis lurus. Gambar kurva dapat dibagi dalam berbagai jumlah yang mendekati bentuk trapezium sejumlah N, jarak h, serta ordinat Y1, Y2, Y3,…,YN. Aturan hanya menjumlahkan semua jumlah trapezium yang terpisah. y1 y2 y3 y4 yn h Luasan trapezium adalah Jadi total luas adalah Atau dapat ditulis

Trapezoidal Rule Tentukan luas total bidang garis air tersebut! Contoh: Setengah lebar bidang garis air kapal yang memiliki panjang 122 m, pada jarak stasion yang sama dimulai dari buritan, adalah sebagai berikut Station 1 2 3 4 5 6 7 8 9 10 1/2 Lebar (m) 2,0 7,3 9,8 10,4 10,6 10,7 9,9 7,8 4,2 0,2 Tentukan luas total bidang garis air tersebut!

Ordinat Antara Metode ordinat antara adalah modifikasi dari aturan trapezoidal dan sering digunakan oleh teknisi kelautan. Satu setengah bidang digunakan pada setiap ujung interval biasa adalah panjang (L) yang dibagi menjadi sejumlah ordinat. Sehingga y2 y3 y4 yn Gbr. 5.1 Aturan Ordinat Rata-Rata y1

Simpson First Rule Aturan Simpson 1 digunakan untuk ordinat ganjil. Minimal 3 ordinat yang diperlukan. Aturan simpson 1 paling banyak digunakan untuk menyelesaikan perhitungan luas atau pun volume suatu luasan dan bentuk lengkungan karena paling mendekati kebenaran. Semakin banyak jumlah ordinat maka hasil yang diperoleh juga semakin benar. Penambahan ordinat dilakukan pada bentuk kurva yang mengalami perubahan yang ekstrim. Hal ini dilakukan agar ketelitian semakin tepat. h x y y0 y1 y2 dx contoh Setengah lebar bidang garis air pada jarak station yang sama 12,2 m dimulai dari buritan masing-masing adalah 2,0; 7.3; 9,8; 10,4; 10,6; 10,7; 10,6; 19,9; 7,8; 4,2 dan 0,2. Tentukan dengan aturan simpson 1 luas total bidang garis air tersebut.

Simpson Second Rule Aturan Simpson 2 digunakan untuk ordinat 4,7,10 dan kelipatannya. Sama seperti aturan simpson 1, Simpson 2 juga sering digunakan untuk perhitungan luas. Untuk mendapatkan rumus perhitungan Simpson 2 digunakan dengan bantuan kurva polynomial seperti di bawah ini Contoh: Tentukan luas total bidang garis air jika setengah garis air digambarkan sebagai berikut dan dibagi dengan station yang sama, panjangnya 120 m. Bandingkan hasilnya dengan menggunakan aturan simpson 1. y h x y0 y1 y2 dx y3 0.1 3,7 7,6 7,5 4,6 2 1 3 4 5 6 7

Simpson Third Rule Aturan Simpson 3 digunakan untuk mendapatkan luas antara 2 ordinat yang berurutan bila ada tiga buah ordinat yang diketahui. Biasanya rumus ini digunakan untuk menghitung luas tonjolan-tonjolan (appendages) pada bagian ujung kapal. Aturan Simpson 3 ini tetap harus memiliki jarak station (jarak antar ordinat) yang sama. Untuk mendapatkan rumus perhitungan simpson 1 digunakan dengan bantuan kurva seperti gambar di bawah dan dirumuskan Contoh soal; Luas daerah yang dibatasi tiga ordinat yang berurutan pada bidang garis air masing-masing adalah 14 m, 15 m, dan 15.5 m dengan jarak 6 m. Tentukan luasan bidang yang dibatasi 2 ordinat terakhir. Jawab; 14 15 15,5 6 dx h x y y0 y1 y2 x y 2 y0 y1 y2 1 h

Latihan Dengan menggunakan perhitungan integral biasa, aturan trapesium, aturan simpson 1, aturan simpson 2 dan aturan simpson 3 hitung luas kurva yang di batasi oleh garis y = x2, dan xo = 2, xt = 5 2 5 Y = x2 x y