Recurrence relations.

Slides:



Advertisements
Presentasi serupa
PERSAMAAN DAN PERTIDAKSAMAAN
Advertisements

STRUKTUR SINGLE DEGREE OF FREDOM
Gilles Brassard and Paul Bratley
Faktorisasi Aljabar Pemfaktoran.
Persamaan dan Pertidaksamaan Linear
LIMIT FUNGSI LIMIT FUNGSI ALJABAR.
Soal No 17 halaman 66 Find a) the coordinates of the foci and vertices for hyperbola whose equations given, b) equation of the asymptotes. Sketch the curve.
Algoritma dan Pemrograman 2C
Design and Analysis of ALGORITHM (Session 3)
Deret MacLaurin Deret Taylor
Review : Invers Matriks
Oleh: Mardiyana Jurusan Pendidikan Matematika
Memecahkan Relasi Recurrence
Economic models Consept of sets. Ingredients of mathematical models An economic model is merely a theoretical framework, and there is no inherent reason.
TEKNIK PENGINTEGRALAN
Penyelesaian Persamaan Linier Simultan
1. The transformation of raw materials into products of greater value by means of chemical reaction is a major industry, and a vast array of commercial.
Algoritma Pemotongan Algoritma Gomory Langkah 1 x3* = 11/2 x2* = 1
Parabolas Circles Ellipses Presented by: 1.Ihda Mardiana H. 2.Hesti Setyoningsih 3.Dewi Kurniyati 4.Belynda Surya F.
Proses Stokastik Semester Ganjil 2013/2014
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
1 Dynamic Response: 1 st and 2 nd Order Systems March 24, 2004.
 1. Explaining the definition of linear equation with one variable.  2. Explaining the characteristics of linear equation with one variable. 3. Determining.
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
Dr. Nur Aini Masruroh Deterministic mathematical modeling.
1 HAMPIRAN NUMERIK SOLUSI PERSAMAAN LANJAR Pertemuan 5 Matakuliah: K0342 / Metode Numerik I Tahun: 2006 TIK:Mahasiswa dapat meghitung nilai hampiran numerik.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Keuangan dan Akuntansi Proyek Modul 2: BASIC TOOLS CHRISTIONO UTOMO, Ph.D. Bidang Manajemen Proyek ITS 2011.
Numerical Methods Semester Genap tahun 2015/2016 M. Ziaul Arif Jurusan Matematika - FMIPA Lecture 3 : Roots of Nonlinear equation.
Grafika Komputer dan Visualisasi Disusun oleh : Silvester Dian Handy Permana, S.T., M.T.I. Fakultas Telematika, Universitas Trilogi Pertemuan 15 : Kurva.
Aplikasi Rekursif.
MATRIKS Konsep Matriks Matrik.
MATRIX Concept of Matrix Matrik.
Bilangan Bulat Matematika Diskrit.
Linear algebra Yulvi zaika.
KOMUNIKASI DATA Materi Pertemuan 3.
Induksi Matematika.
07/11/2017 BARISAN DAN DERET KONSEP BARISAN DAN DERET 1.
CONTROL SYSTEM ENGINEERING (Dasar Sistem Kontrol)
Algoritma rekursif dan relasi rekurensi
LIMIT FUNGSI LIMIT FUNGSI ALJABAR.
Branch and Bound Lecture 12 CS3024.
Cartesian coordinates in two dimensions
Cartesian coordinates in two dimensions
Kode Hamming.
CSG523/ Desain dan Analisis Algoritma
IR. Tony hartono bagio, mt, mm
EKONOMI REKAYASA PERTEMUAN 4 INFLATION & DEFLATION Oleh :
Parabola Parabola.
Review Operasi Matriks
CSG3F3/ Desain dan Analisis Algoritma
Matematika Informatika 2
BILANGAN REAL BILANGAN BERPANGKAT.
Two-and Three-Dimentional Motion (Kinematic)
REAL NUMBERS EKSPONENT NUMBERS.
FUNGSI.
FACTORING ALGEBRAIC EXPRESSIONS
Matematika Pertemuan 16 Matakuliah : D0024/Matematika Industri II
P O L I N O M I A L (SUKU BANYAK) Choirudin, M.Pd.
Copyright © Cengage Learning. All rights reserved.
PERSAMAAN POLINOMIAL.
Matematika Diskrit TIF (4 sks) 3/9/ /5/2010.
Matematika PERSAMAAN KUADRAT Quadratic Equations Quadratic Equations
A SMALL TRUTH TO MAKE LIFE 100%. Hard Work H+A+R+D+W+O+R+K = 98% Knowledge K+N+O+W+L+E+D+G+E = 96%
Simultaneous Linear Equations
Deret MacLaurin Deret Taylor
Solusi Program Linier dengan Metode Grafik
Operasi Matriks Dani Suandi, M.Si..
By Yulius Suprianto Macroeconomics | 02 Maret 2019 Chapter-5: The Standard of Living Over Time and A Cross Countries Source: http//
POLYNOMIAL (suku banyak)
Transcript presentasi:

Recurrence relations

Pengertian Suatu Recurrence Relation untuk deret {an} adalah formula yang menyatakan an dalam bentuk satu atau lebih deret sebelumnya. Misalkan a0, a1, a2,…, an-1 untuk setiap bilangan bulat n dimana n≥ n0,dimana n0 adalah bilangan bulat positif. Suatu deret disebut solusi dari Recurrence Relation jika deret tersebut memenuhi Recurrence Relation

Contoh : {an} adalah deret yang memenuhi Recurrence Relation an = an-1 – an-2 untuk n=2,3,4,… dan diketahui a0 = 3 dan a1 = 5. Berapa a2 dan a3? a2 = a1 – a0 = 5 – 3 = 2 a3 = a2 – a1 = 2 – 5 = -3

Linear Homogeneous Recurrence Relation Linear Homogeneous Recurrence Relation dengan derajat k dan dengan koefisien konstan adalah Recurrence Relation yang berbentuk : Dimana c1,c2,…,ck adalah bilangan real, ck ≠ 0

Linear Homogeneous Recurrence Relation Ciri-ciri : Linear : suku-suku pada ruas kanannya merupakan penjumlahan dari deret sebelumnya Homogeneous : tidak ada elemen yang bukan kelipatan dari aj Constant : Koefisien c tidak tergantung dari n

Teorema 1 Jika c1 dan c2 adalah bilangan real dan r2-c1r-c2=0 memiliki dua akar berbeda yaitu r1 dan r2, maka deret {an} merupakan solusi recurrence relation : Untuk n=0,1,2,… dimana 1 dan 2 adalah konstanta.

Teorema 2 Jika c1 dan c2 adalah bilangan real dengan c2≠0 dan r2-c1r-c2=0 memiliki 1 akar r0, maka deret {an} merupakan solusi recurrence relation : Untuk n=0,1,2,… dimana 1 dan 2 adalah konstanta.

Teorema 3 Jika c1,c2,…,ck adalah bilangan bulat dan persamaan karakteristik rk-c1rk-1-…-ck=0 memiliki k akar yang berbeda yaitu r1, r2,… rk maka deret {an} merupakan solusi recurrence relation : Untuk n=0,1,2,… dimana 1, 2,… k adalah konstanta.

Solving Recurrence Relations Example: What is the solution of the recurrence relation an = an-1 + 2an-2 with a0 = 2 and a1 = 7 ? Solution: The characteristic equation of the recurrence relation is r2 – r – 2 = 0. Its roots are r = 2 and r = -1. Hence, the sequence {an} is a solution to the recurrence relation if and only if: an = 12n + 2(-1)n for some constants 1 and 2.

Solving Recurrence Relations Given the equation an = 12n + 2(-1)n and the initial conditions a0 = 2 and a1 = 7, it follows that a0 = 2 = 1 + 2 a1 = 7 = 12 + 2 (-1) Solving these two equations gives us 1= 3 and 2 = -1. Therefore, the solution to the recurrence relation and initial conditions is the sequence {an} with an = 32n – (-1)n.

Solving Recurrence Relations Example: Give an explicit formula for the Fibonacci numbers. Solution: The Fibonacci numbers satisfy the recurrence relation fn = fn-1 + fn-2 with initial conditions f0 = 0 and f1 = 1. The characteristic equation is r2 – r – 1 = 0. Its roots are

Solving Recurrence Relations Therefore, the Fibonacci numbers are given by for some constants α1 and α 2. We can determine values for these constants so that the sequence meets the conditions f0 = 0 and f1 = 1:

Solving Recurrence Relations The unique solution to this system of two equations and two variables is So finally we obtained an explicit formula for the Fibonacci numbers:

Solving Recurrence Relations Example: What is the solution of the recurrence relation an = 6an-1 – 9an-2 with a0 = 1 and a1 = 6? Solution: The only root of r2 – 6r + 9 = 0 is r0 = 3. Hence, the solution to the recurrence relation is an = 13n + 2n3n for some constants 1 and 2.

Solving Recurrence Relations To match the initial condition, we need a0 = 1 = 1 a1 = 6 = 13 + 23 Solving these equations yields 1 = 1 and 2 = 1. Consequently, the overall solution is given by an = 3n + n3n.

Selamat Belajar