GEOMETRI Probolinggo SMK Negeri 2 SUDUT DAN BIDANG.

Slides:



Advertisements
Presentasi serupa
Translasi Rotasi Refleksi Dilatasi
Advertisements

MATEMATIKA SMK KELAS XI SEMESTER 2
TRANSFORMASI LINIER II
Transformasi Linier.
Bentuk Koordinat Koordinat Kartesius, Koordinat Polar, Koordinat Tabung, Koordinat Bola Desember 2011.
Materi Kuliah Kalkulus II
GEOMETRI TRANSFORMASI
TRANSFORMASI GEOMETRI
Transformasi geometri.  Pemindahan objek (titik, garis, bidang datar) pada bidang.  Perubahan yang (mungkin) terjadi: Kedudukan / letak Arah Ukuran.
PELATIHAN MATEMATIKA GURU SMK MODEL SENI/PARIWISATA/BISNIS MANAJEMEN
Bab 5 TRANSFORMASI.
Transformasi Geometri
TRANSFORMASI.
Koordinat Kartesius, Koordinat Tabung & Koordinat Bola
TRANSFORMASI GEOMETRI.
Koordinat Kartesius, Koordinat Bola, dan Koordinat Tabung
Tidak ada yang mudah, tapi tidak ada yang tidak mungkin…..
Selamat Bertemu Kembali
TRANSFORMASI.
T R A N S F O R M A S I G E O M E T R I
TRANSFORMASI 2D.
VEKTOR VEKTOR PADA BIDANG.
Transformasi Geometri Sederhana
Irma Damayantie, S.Ds., M.Ds Prodi Desain Interior - FDIK
Transformasi Geometri Sederhana
GEOMETRI SUDUT DAN BIDANG.
TRANSFORMASI Created By : Kelompok 3
Transformasi 2D Grafika Komputer.
Anna Dara Andriana, S.Kom., M.Kom
Transformasi geometri
dan Transformasi Linear dalam
AYO BELAJAR TRANSFORMASI GEOMETRI !!!
Matematika Dasar 3 “Trigonometri”
TRANSFORMASI GEOMETRI Transformasi Geometri
PERPUTARAN ( ROTASI ) Selanjutnya P disebut pusat rotasi dan  disebut sudut rotasi.  > 0 jika arah putar berlawanan arah putaran jarum jam.
P. XIV RUANG-RUANG VEKTOR EUCLIDEAN
Transformasi MENU NAMA: ERFIKA YANTI NIM:
Transformasi 2D.
Transformasi (Refleksi).
Kelompok 2 Agra Ahmad Afandi Ahmad Afif Alfian Hadi Pratama
Nur Cahya Setyaningsih
OPERASI GEOMETRI Yohana Nugraheni.
Translasi (Pergeseran)
PERGESERAN (TRANSLASI)
TRANSFORMASI 2 DIMENSI Oleh : Hieronimus Edhi Nugroho, M.Kom
Hidayat Fatoni, S.Pd. SMA Negeri 4 Magelang
Grafika Komputer Transformasi 2 Dimensi.
Irma Damayantie, S.Ds., M.Ds. Prodi Desain Interior - FDIK
Tidak ada yang mudah, tapi tidak ada yang tidak mungkin…..
Transformasi Translasi
DIMENSI DUA transformasi TRANSLASI.
Kelas 1.C Nina Ariani Juarna Ghia Mugia Wilujeng Faujiah Lulu Kamilah.
Mau ngepresentasiin tentang translasi ama dilatasi nih...
Peta Konsep. Peta Konsep B. Transformasi pada Garis dan Kurva.
Peta Konsep. Peta Konsep C. Penerapan Matriks pada Transformasi.
Peta Konsep. Peta Konsep A. Macam-Macam Transformasi.
Peta Konsep. Peta Konsep B. Transformasi pada Garis dan Kurva.
Transformasi Geometri 2 Dimensi
Peta Konsep. Peta Konsep A. Macam-Macam Transformasi.
Peta Konsep. Peta Konsep A. Komposisi Transformasi.
ULANGAN SELAMAT BEKERJA Mata Pelajaran : Matematika
TRANSFORMASI GEOMETRI
Peta Konsep. Peta Konsep C. Transformasi Geometris.
Peta Konsep. Peta Konsep A. Komposisi Transformasi.
Peta Konsep. Peta Konsep A. Macam-Macam Transformasi.
TRANFORMASI.
Disusun oleh : miftakhul huda, S.Pd. TRANSLASI TUJUAN : SISWA DAPAT MENJELASKAN KONSEP DAN PENGERTIAN TRANSLASI SISWA DAPAT MENENTUKAN SIFAT-SIFAT TRANSLASI.
DILATASI SIFAT-SIFAT DILATASI SOAL-SOAL DILATASI PENGERTIAN DILATASI.
Irma Damayantie, S.Ds., M.Ds. Prodi Desain Interior - FDIK
TRANSFORMASI GEOMETRI. Apa aja sih benda yang berotasi di sekeliling kita.
Transcript presentasi:

GEOMETRI Probolinggo SMK Negeri 2 SUDUT DAN BIDANG

Isi dengan Judul Halaman Terkait Sudut dan Bidang Standar Kompetensi: Menentukan kedudukan garis, dan besar sudut yang melibatkan titik, garis dan bidang dalam dimensi dua Kompetensi Dasar: 3. Menerapkan transformasi bangun datar. Hal.: 2 Isi dengan Judul Halaman Terkait

Transformasi Geometri 1. Translasi (pergeseran) Transformasi translasi suatu titik P(x,y) adalah dengan cara menggeser sejauh a satuan pada sumbu x dan sejauh b satuan pada sumbu y yang dinotasikan dengan T = sehingga menjadi titik P’(x’, y’) dengan: x’ = x + a y’ = y + b Lihat gambar 1 P(x’,y’) P(x,y) x y Gambar 1 HAL 6 Hal.: 3 Isi dengan Judul Halaman Terkait

Transformasi Geometri Contoh translasi: Jika diketahui translasiT = dan titik Q ( 1, 1), maka tentukanlah koordinat titik Q’. 4 3 Jawab: Q(1, 1) Q’=(1 + 4, 1 + 3) Q’=( 5, 4) Lihat Gambar 2 P’(5,4) P(1,1) Gambar 2 HAL 8 Hal.: 4 Isi dengan Judul Halaman Terkait

2. Refleksi ( pencerminan) Transformasi Geometri 2. Refleksi ( pencerminan) 2.1 Pencerminan terhadap garis x = a 2.1 Pencerminan terhadap garis x = a Sebuah titik P(x, y) dicerminkan terhadap garis x = a, dapat ditulis: M . x = a P (x, y) P’(2a – x, y) 2.2 Pencerminan terhadap garis y = b Sebuah titik P(x, y) dicerminkan terhadap garis y= b, dapat ditulis: P (x, y) P’(2a – x, y) M . y = b HAL 9 Hal.: 5 Isi dengan Judul Halaman Terkait

Transformasi Geometri Contoh Refleksi : Tentukan bayangan titik P (2, 1) jika dicerminkan terhadap: a. Garis x = 3 b. Garis y = 5 Jawab: a. P(2, 1) P’ (2 . 3 – 2, 1) = P’( 4, 1) b. P(2, 1) P’(2, 2 . 5 – 1) = P’(2, 9). M . x = 3 M . y = 5 Lihat gambar 3 P’(2, 9) . Gambar 3 Y x = 3 y = 5 P(2,1) . .P’(4,1) X Hal.: 6 Isi dengan Judul Halaman Terkait

Transformasi Geometri 3. Rotasi (Perputaran) Rotasi adalah suatu transformasi yang memindahkan setiap titik pada bidang datar dengan cara memutar setiap titik tersebut yang ditentukan oleh: Besar sudut rotasi Titik pusat rotasi Arah sudut rotasi. Perhatikan Gambar 4 Pada rotasi terhadap titik pusat O(0,0) sebesar radian dengan arah positif maka titik P(x,y) menjadi P’(x’,y’) yang dapat dinyatakan sebagai: Y P’(x’,y’) P(x,y) x’ = x cos - y sin y’ = x sin + y cos X Hal.: 7 Isi dengan Judul Halaman Terkait

Transformasi Geometri Lanjutan Rotasi Titik Q(-1, 4) diputar searah jarum jam terhadap titik pusat O,tentukan bayangan titik Q oleh rotasi (O, 450) Jawab: = - 450 x’ = x cos - y sin = -1 Cos (- 450) – 4 sin (- 450) = - ½ - 4 . (- ½ ) = - ½ + 2 = y’ = x sin + y cos = -1 Sin(-450) + 4 Cos(-450) = -1(-½ ) + 4 . ½ = ½ + 2 = 5/2 ( Jadi Q’ (3/2 , 5/2 ) Hal.: 8 Isi dengan Judul Halaman Terkait

Transformasi Geometri 4. Dilatasi (Perkalian) Dilatasi adalah suatu transformasi yang mengubah ukuran (memperbesar atau memperkecil) suatu bidang datar, tetapi tidak mengubah bentuk bangun, yang ditentukan oleh: Pusat dilatasi Faktor dilatasi atau faktor skala Perhatikan gambar 5 C’ Jika P(x,y) didilatasikan terhadap pusat O(0,0) dengan faktor skala k diperoleh bayangan P’(x’,y’) C B’ B O A x’ = k . x, y’ = k . y A ‘ Hal.: 9 Isi dengan Judul Halaman Terkait

Transformasi Geometri Contoh Dilatasi Tentukan bayangan titik P(2,8) oleh dilatasi: (0, 2) (0, ½ ) Berpikirlah Penyelesaian: P(2, 8) P’ ( 2 . 2, 2 . 6 ) = P’ (4, 12)r P(2, 6) P’ ( ½ . 2, ½ . 6) = P’ (1, 3) (0, 2) (0, ½ ) Jadi P’(1, 3) Hal.: 10 Isi dengan Judul Halaman Terkait

Isi dengan Judul Halaman Terkait TERIMA KASIH SEMOGA SUKSES Giatlah belajar Hal.: 11 Isi dengan Judul Halaman Terkait