Bahan Kuliah RANGKAIAN DIGITAL

Slides:



Advertisements
Presentasi serupa
Bahan Kuliah IF2151 Matematika Diskrit
Advertisements

SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN PERSATUAN GURU REPUBLIK INDONESIA PONTIANAK MUHAMAD ARPAN, S.Kom. Pendidikan Teknologi Informasi dan Komputer.
FAKULTAS ILMU KEGURUAN PENDIDIKAN MATEMATIKA
Muh. Nurrudin Al-Faruqi
Aljabar Boolean dan Fungsi Boolean
11. ALJABAR BOOLEAN.
PERTEMUAN MINGGU KE-2 LEVEL GATE.
MATERI 6 BENTUK-BENTUK NORMAL DNF/SOP/MINTERM CNF/POS/MAXTERM
BAB 3 FUNGSI BOOLEAN.
11. ALJABAR BOOLEAN.
Logika Matematika Bab 1: Aljabar Boolean
Pertemuan ke 17.
METODE QUINE-McCLUSKEY
BAB 7 ALJABAR BOOLEAN.
TOPIK 3 BENTUK-BENTUK NORMAL Ramos Somya, S.Kom., M.Cs.
Riri irawati, m.Kom Logika matematika 3 sks
Aljabar Boolean IF2120 Matematika Diskrit Oleh: Rinaldi Munir
BAB VII ALJABAR BOOLEAN waniwatining.
KUMPULAN LATIHAN SOAL ASSESMENT BAGIAN 1
ALJABAR BOOLEAN DEFINISI :
SEKOLAH TINGGI TEKNOLOGI TELEMATIKA TELKOM
PENYEDERHANAAN FUNGSI BOOLEAN
Penyederhanaan Fungsi Boolean
DOSEN: SRI SUPATMI,S.KOM
Seri Kuliah Logika Informatika - Wawan Laksito YS
DOSEN: SRI SUPATMI,S.KOM
Aljabar Boolean Bahan Kuliah IF2151 Matematika Diskrit
Pertemuan ke 17.
BAB 7 ALJABAR BOOLEAN.
11. ALJABAR BOOLEAN.
Prinsip dan Perancangan Logika
Aljabar Boolean.
BAB 7 ALJABAR BOOLEAN.
Pertemuan ke 17.
Aljabar Boolean Bahan Kuliah IF2151 Matematika Diskrit
GERBANG LOGIKA DAN ALJABAR BOOLEAN
Logika dan Sistem Digital
UNIVERSITAS TRUNOJOYO
TOPIK 3 BENTUK-BENTUK NORMAL.
Fungsi Boolean, Bentuk Kanonik dan Bentuk Baku
ALJABAR BOOLEAN Universitas Telkom
Matematika Diskrit Nelly Indriani Widiastuti
Aljabar Boolean dan Fungsi Boolean
Penyederhanaan Fungsi boolean
Aljabar Boolean dan Fungsi Boolean
GERBANG LOGIKA DAN ALJABAR BOOLEAN.
PENYEDERHANAAN RANGKAIAN
Aplikasi dan penyederhanaan Aljabar Boolean
Pertemuan 9 Aljabar Boolean.
(ii) a + (b c) = (a + b) (a + c)
PERTEMUAN 05 APLIKASI GERBANG LOGIKA BINER
PERTEMUAN MINGGU KE-2 LEVEL GATE.
Matematika informatika 2
KUMPULAN LATIHAN SOAL ASSESMENT BAGIAN 1
MATERI 8 BENTUK-BENTUK NORMAL.
PENYEDERHANAAN FUNGSI BOOLEAN
PRINSIP & PERANCANGAN LOGIKA
Rumusan Capaian Pembelajaran Mata Kuliah
BAB 3 ALJABAR BOOLEAN.
SISTEM DIGITAL MUHAMAD ARPAN, S.Kom.
Penyederhanaan Fungsi Boolean
Aljabar Boolean dan Fungsi Boolean
Bab II Aljabar Boole Pertemuan Ke-7 : Definisi Aljabar Boole
Kumpulan Materi Kuliah
Sistem Digital BAB 2 Aljabar Boolean
PERTEMUAN MINGGU KE-2 LEVEL GATE.
Fungsi Boolean, Bentuk Kanonik dan Bentuk Baku
Aplikasi dan penyederhanaan Aljabar Boolean
PERTEMUAN MINGGU KE-2 LEVEL GATE.
Pertemuan Ke-8 : Bentuk Kanonik
Transcript presentasi:

Bahan Kuliah RANGKAIAN DIGITAL Aljabar Boolean Bahan Kuliah RANGKAIAN DIGITAL

Definisi Aljabar Boolean

Untuk mempunyai sebuah aljabar Boolean, harus diperlihatkan: 1. Elemen-elemen himpunan B, 2. Kaidah operasi untuk operator biner dan operator uner, 3. Memenuhi postulat Huntington.

Aljabar Boolean Dua-Nilai

Ekspresi Boolean

Mengevaluasi Ekspresi Boolean

Prinsip Dualitas

Hukum-hukum Aljabar Boolean

Fungsi Boolean

Komplemen Fungsi

Bentuk Kanonik

Konversi Antar Bentuk Kanonik

Bentuk Baku Tidak harus mengandung literal yang lengkap. Contohnya,   f(x, y, z) = y’ + xy + x’yz (bentuk baku SOP f(x, y, z) = x(y’ + z)(x’ + y + z’) (bentuk baku POS)

Aplikasi Aljabar Boolean

Penyederhanaan Fungsi Boolean

1. Penyederhanaan Secara Aljabar

Penyederhanaan Secara Aljabar

2. Peta Karnaugh

Kondisi Don’t care

Metode Quine-McCluskey Metode Peat Karnaugh tidak mangkus untuk jumlah peubah > 6 (ukuran peta semakin besar). Metode peta Karnaugh lebih sulit diprogram dengan komputer karena diperlukan pengamatan visual untuk mengidentifikasi minterm-minterm yang akan dikelompokkan. Metode alternatif adalah metode Quine-McCluskey . Metode ini mudah diprogram.

Latihan soal Implementasikan fungsi f(x, y, z) =  (0, 6) dan hanya dengan gerbang NAND saja. Gunakan Peta Karnaugh untuk merancang rangkaian logika yang dapat menentukan apakah sebuah angka desimal yang direpresentasikan dalam bit biner merupakan bilangan genap atau bukan (yaitu, memberikan nilai 1 jika genap dan 0 jika tidak).

3. Sebuah instruksi dalam sebuah program adalah   if A > B then writeln(A) else writeln(B); Nilai A dan B yang dibandingkan masing-masing panjangnya dua bit (misalkan a1a2 dan b1b2). (a) Buatlah rangkaian logika (yang sudah disederhanakan tentunya) yang menghasilkan keluaran 1 jika A > B atau 0 jika tidak. (b) Gambarkan kembali rangkaian logikanya jika hanya menggunakan gerbang NAND saja (petunjuk: gunakan hukum de Morgan)

Buatlah rangkaian logika yang menerima masukan dua-bit dan menghasilkan keluaran berupa kudrat dari masukan. Sebagai contoh, jika masukannya 11 (3 dalam sistem desimal), maka keluarannya adalah 1001 (9 dalam sistem desimal).