Metode numerik secara umum

Slides:



Advertisements
Presentasi serupa
Metode Numerik PENDAHULUAN.
Advertisements

METODE NUMERIK BAB I.
Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi,
PERSAMAAN NON LINEAR.
INTEGRASI NUMERIK.
PERSAMAAN NON LINEAR.
METODE NUMERIK EDY SUPRAPTO 1.
By: NI WAYAN SUARDIATI PUTRI, S.Pd, M.Pd
Pendahuluan Metode Numerik Secara Umum
Pendahuluan Metode Numerik Secara Umum
SOLUSI PERSAMAAN NIRLANJAR RUMUSAN MASALAH, METODE PENCARIAN AKAR,METODE TERTUTUP, DAN METODE TERBUKA DISUSUN OLEH : DEVI WINDA MARANTIKA ( )
Muhammad Zen S. Hadi, ST. MSc.
Persamaan Non Linier Supriyanto, M.Si..
Metode Numerik Persamaan Non Linier.
6. PENCOCOKAN KURVA (CURVE FITTING).
6. PENCOCOKAN KURVA (CURVE FITTING).
1. PENDAHULUAN.
Solusi Persamaan Nirlanjar (Bagian 2)
METODE NUMERIK.
ALGORITMA MATEMATIKA.
8. INTEGRASI NUMERIK (Lanjutan).
4. SOLUSI PERSAMAAN NON-LINIER.
1. PENDAHULUAN.
6. PENCOCOKAN KURVA (CURVE FITTING).
Mata Kuliah Metode Numerik Semester 6 (2 SKS)
Kontrak Perkuliahan dan Pengenalan Metode Numerik
Persamaan Non Linier (lanjutan 02)
1. Pendahuluan.
PERSAMAAN non linier 3.
Fika Hastarita Rachman Semester Genap 2011/2012
Metode Interpolasi Pemetaan Langsung
Teknik Informatika-Unitomo Anik Vega Vitianingsih
Persamaan Non Linier (Lanjutan 1)
Metode Numerik Gabriel S.
Edy mulyanto METODE NUMERIK Edy mulyanto
Metode Numerik untuk Pencarian Akar
HAMPIRAN NUMERIK FUNGSI
ANALISA NUMERIK 1. Pengantar Analisa Numerik
Aflich Yusnita F, M.Pd. STKIP SILIWANGI BANDUNG
oleh Ir. Indrawani Sinoem, MS.
PENDAHULUAN METODE NUMERIK
PERTEMUAN 1 PENDAHULUAN
Metode Numerik dan Metode Analitik Pertemuan 1
Metode Interpolasi Lagrange
Turunan Numerik.
Kontrak Perkuliahan dan Pengenalan Metode Numerik
Turunan Numerik.
Kuliah Pendahuluan/ Pertemuan Ke-1 | Ismail
Metode Numerik Oleh: Swasti Maharani.
Solusi persamaan aljabar dan transenden
Metode Numerik (3 SKS) Kuliah pertama
METODE NUMERIK AKAR-AKAR PERSAMAAN.
AKAR PERSAMAAN NON LINEAR
Metode Newton-Raphson
Metode Interpolasi Selisih-terbagi Newton
Metode Numerik untuk Pencarian Akar
METODE NUMERIK IRA VAHLIA.
Teknik Komputasi Persamaan Non Linier Taufal hidayat MT.
Materi I Choirudin, M.Pd PERSAMAAN NON LINIER.
Persamaan Linier Metode Regula Falsi
Metode Newton-Raphson
SISTEM PERSAMAAN NIRLANJAR (NONLINIER)
MATA KULIAH METODE NUMERIK NOVRI FATMOHERI
PRAKTIKUM II METODE NUMERIK
Pendahuluan Metode Numerik Secara Umum
Bab 2 AKAR – AKAR PERSAMAAN
METODE NUMERIK (3 SKS) STMIK CILEGON.
Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi
REKAYASA KOMPUTASIONAL : Pendahuluan
Metode numerik A SKS S1 Teknik Informatika
Transcript presentasi:

Metode numerik secara umum 1

Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan (bidang fisika, kimia, Teknik Sipil, Teknik Mesin, Elektro dsb) Sering model matematika tersebut rumit dan tidak dapat diselesaikan dengan metode analitik Metode Analitik adalah metode penyelesaian model matematika dengan rumus-rumus aljabar yang sudah lazim.

Persoalan matematika Bagaimana cara menyelesaikannya ? Tentukan akar-akar persamaan polinom : 23.4x7 - 1.25x6+ 120x4 + 15x3 – 120x2 – x + 100 = 0 2. Selesaikan sistem persamaan linier berikut : 1.2a – 3b – 12c + 12d + 4.8e – 5.5f + 100g = 18 0.9a + 3b – c + 16d + 8e – 5f - 10g = 17 4.6a + 3b – 6c - 2d + 4e + 6.5f - 13g = 19 3.7a – 3b + 8c - 7d + 14e + 8.4f + 16g = 6 2.2a + 3b + 17c + 6d + 12e – 7.5f + 18g = 9 5.9a + 3b + 11c + 9d - 5e – 25f + 10g = 0 1.6a + 3b + 1.8c + 12d - 7e + 2.5f + g = -5

Persoalan matematika Soal 1, biasanya untuk polinom derajat 2 masih dapat dicari akar2 polinom dengan rumus abc Sedangkan untuk polinom dg derajat > 2 tidak terdapat rumus aljabar untuk menghitung akar polinom. Dengan cara pemfaktoran, semakin tinggi derajat polinom, jelas semakin sukar pemfaktorkannya. Soal 2, juga tidak ada rumus yang baku untuk menemukan solusi sistem pers linier. Apabila sistem pers linier hanya mempunyai 2 peubah, kita dapat menemukan solusinya dengan grafik, aturan Cramer

Metode Analitik vs Metode Numerik Kebanyakan persoalan matematika tidak dapat diselesaikan dengan metode analitik. Metode analitik disebut juga metode exact yang menghasilkan solusi exact (solusi sejati). Metode analitik ini unggul untuk sejumlah persoalan yang terbatas. Padahal kenyataan persoalan matematis banyak yang rumit, sehingga tidak dapat diselesaikan dengan metode analitik.

Metode Analitik vs Metode Numerik Kalau metode analitik tidak dapat diterapkan, maka solusi dapat dicari dengan metode numerik. Metode Numerik adalah teknik yang digunakan untuk memformulasikan persoalan matematika sehingga dapat dipecahkan dengan operasi perhitungan biasa (+, - , / , *)

Contoh Selesaikan integral di bawah ini Metode Analitik

Contoh Metode Numerik Error = |7.25-7.33| = 0.0833

Perbedaan Metode Numerik dan Metode Analitik Solusi selalu berbentuk angka Solusi yang dihasilkan solusi pendekatan sehingga terdapat error Metode Analitik Solusi dapat berupa fungsi matematik Solusi yang dihasilkan solusi exact

Peranan Komputer dalam Metode Numerik Perhitungan dalam metode numerik berupa operasi aritmatika dan dilakukan berulang kali, sehingga komputer untuk mempercepat proses perhitungan tanpa membuat kesalahan Dengan komputer kita dapat mencoba berbagai kemungkinan solusi yang terjadi akibat perubahan beberapa parameter. Solusi yang diperoleh juga dapat ditingkatkan ketelitiannya dengan mengubah nilai parameter.

Peran Metode Numerik Metode Numerik merupakan alat bantu pemecahan masalah matematika yang sangat ampuh. Metode numerik mampu menangani sistem persamaan linier yang besar dan persamaan-persamaan yang rumit. Merupakan penyederhanaan matematika yang lebih tinggi menjadi operasi matematika yang mendasar.

Persoalan yang diselesaikan dengan Metode Numerik Menyelesaikan pers non-linier M. Tertutup : Tabel, Biseksi, Regula Falsi, M Terbuka : Secant, Newton Raphson, Iterasi Sederhana Menyelesaikan pers linier Eliminasi Gauss, Eliminasi Gauss Jordan, Gauss Seidel Differensiasi Numerik Selisih Maju, Selisih Tengahan, Selisih Mundur Integrasi Numerik Integral Reimann, Integrasi Trapezoida, Simpson, Gauss Interpolasi Interpolasi Linier, Quadrat, Kubik, Polinom Lagrange, Polinom Newton Regresi Regresi Linier dan Non Linier Penyelesaian Persamaan Differensial Euler, Taylor

Tahap-Tahap Memecahkan Persoalan Secara Numerik Ada enam tahap yang dilakukan dakam pemecahan persoalan dunia nyata dengan metode numerik, yaitu 1. Pemodelan Ini adalah tahap pertama. Persoalan dunia nyata dimodelkan ke dalam persamaan matematika 2. Penyederhanaan model Model matematika yang dihasilkan dari tahap 1 mungkin saja terlalu kompleks, yaitu memasukkan banyak peubah (variable) atau parameter. Semakin kompleks model matematikanya, semakin rumit penyelesaiannya.

Tahap-Tahap Memecahkan Persoalan Secara Numerik 3. Formulasi numerik Setelah model matematika yang sederhana diperoleh, tahap selanjutnya adalah memformulasikannya secara numerik, antara lain: a. menentukan metode numerik yang akan dipakai bersama-sama dengan analisis galat awal (yaitu taksiran galat, penentuan ukuran langkah, dan sebagainya). Pemilihan metode didasari pada pertimbangan: - apakah metode tersebut teliti? - apakah metode tersebut mudah diprogram dan waktu pelaksanaannya cepat? - apakah metode tersebut tidak peka terhadap perubahan data yang cukup kecil? b. menyusun algoritma dari metode numerik yang dipilih.

Tahap-Tahap Memecahkan Persoalan Secara Numerik 4. Pemrograman Tahap selanjutnya adalah menerjemahkan algoritma ke dalam program komputer dengan menggunakan salah satu bahasa pemrograman yang dikuasai. 5. Operasional Pada tahap ini, program komputer dijalankan dengan data uji coba sebelum data yang sesungguhnya. 6. Evaluasi Bila program sudah selesai dijalankan dengan data yang sesungguhnya, maka hasil yang diperoleh diinterpretasi. Interpretasi meliputi analisis hasil run dan membandingkannya dengan prinsip dasar dan hasil-hasil empirik untuk menaksir kualitas solusi numerik, dan keputusan untuk menjalankan kembali program dengan untuk memperoleh hasil yang lebih baik.