3. 3 Materi Pokok 1. Luas Daerah 2. Volume Benda Putar.

Slides:



Advertisements
Presentasi serupa
PEMERINTAH KOTA PONTIANAK DINAS PENDIDIKAN PEMERINTAH KOTA PONTIANAK DINAS PENDIDIKAN Jl. Letjen. Sutoyo Pontianak, Telp. (0561) , Website:
Advertisements

Matematika SMK INTEGRAL Kelas/Semester: III/5 Persiapan Ujian Nasional.
APLIKASI INTEGRAL.
Penggunaan Integral Tentu
Bilangan Real ® Bil. Rasional (Q)
MEDIA PRESENTASI PEMBELAJARAN
PENGGUNAAN INTEGRAL Menghitung luas suatu daerah yang dibatasi oleh kurva dan sumbu-sumbu koordinat. Menghitung volume benda putar. 9 Luas daerah di bawah.
7. APLIKASI INTEGRAL MA1114 KALKULUS I.
KONSEP, SIFAT DAN ATURAN Bagian 1
Aplikasi integral tentu
HITUNG INTEGRAL INTEGRAL TAK TENTU.
MODUL VI : PENERAPAN INTEGRAL
PETUNJUK TEKNIS PENULISAN BUTIR SOAL.
PERENCANAAN DAN PENGEMBANGAN PROGRAM PEMBELAJARAN KIMIA (P4KIM) Drs
PENGGUNAAN INTEGRAL TERTENTU
PLPG MATEMATIKA GELOMBANG V TAHUN 2011
“ Integral ” Media Pembelajaran Matematika Berbasis
Menanggapi Pementasan Drama
Koordinat Kartesius, Koordinat Tabung & Koordinat Bola
Kurikulum 2013 mempersembahkan waktu media pembelajaran statistika
MENGUKUR VOLUME TABUNG
Assalammualikum, Wr. Wb Siswa sekalian, sebelumnya ibu minta maaf karena hari ini ibu tidak bisa masuk. tetapi walaupun ibu tidak masuk, kalian semua.
INTEGRAL TENTU DAN PENERAPANNYA
Volume Benda Putar Materi Luas Daerah & Volume Benda Putar bisa di download dari PR selama liburan: Dengan Integral, buktikan.
HITUNG INTEGRAL INTEGRAL TAK TENTU.
OLEH LA MISU & MOHAMAD SALAM
KALKULUS 2 JURUSAN TEKNOLOGI INFORMASI FAKULTAS TEKNIK UNIVERSITAS TADULAKO PROGRAM STUDI S1 TEKNIK INFORMATIKA.
Presentasi by: Fadilah Nur ( )
PENERAPAN INTEGRAL Menghitung luas suatu daerah yang dibatasi oleh kurva dan sumbu-sumbu koordinat.
7.2.2 Metoda Cincin a. Daerah diputar terhadap sumbu x Daerah D
Penerapan Integral Tertentu
KALKULUS 2 INTEGRAL.
APLIKASI INTEGRAL TENTU.
JUDUL TOPIK Judul Kelas X Semester 1 KOMPETENSI APERSEPSI MATERI 1
INTEGRAL TENTU DAN PENERAPANNYA
Bantuan HOME : Kembali ke menu utama
INTEGRAL Aplikasi Bahan Ajar Matematika Kelas XII SMA
UNIVERSITAS MUHAMMADIYAH SUKABUMI
" Terbangunnya manusia utuh yang takut akan Tuhan,
Matakuliah : R0262/Matematika Tahun : September 2005 Versi : 1/1
MEDIA PEMBELAJARAN MATEMATIKA (LIMIT DERET GEOMETRI)
Show Time.
INTEGRAL TENTU DAN PENERAPAN
INTEGRAL TENTU DAN PENERAPAN
RENCANA PELAKSANAAN PEMBELAJARAN
Geometri Oleh: SUTIYONO GURU SD 2 BESITO
Pendidikan Matematika
Kelas XI IPA SMA Semester 1
SMP Kelas IX Semester II
RENCANA PELAKSANAAN PEMBELAJARAN MATA PELAJARAN FISIKA KELAS XI IPA
Kalkulus II ( IF ) Pendahuluan Juwairiah, S.Si,M.T
BANGUN RUANG Dosen : Dina Octaria, S.si, M.pd DISUSUN:
MEDIA PRESENTASI PEMBELAJARAN
Matakuliah : R0262/Matematika Tahun : September 2005 Versi : 1/1
KALKULUS 2 INTEGRAL.
Nama : Hendrik Pical TTL : Banjar Masin, Pendidikan : S1 Prodi : Matematika Hobi : Menulis Alamat Web : Blokmatek.wordpress.com No.HP :
Integral.
MEDIA PRESENTASI PEMBELAJARAN
Rumus - Rumus Trigonometri
MATEMATIKA 2.
Limit.
Peta Konsep. Peta Konsep E. Merumuskan dan Menghitung Volume Benda Putar.
Peta Konsep. Peta Konsep E. Merumuskan dan Menghitung Volume Benda Putar.
UNIVERSITAS MUHAMMADIYAH SUKABUMI
INTEGRAL TENTU DAN PENERAPAN
MENU UTAMA TURUNAN FUNGSI
7. APLIKASI INTEGRAL.
Sudiarto, SMK Negeri 5 Jember, 2013/2014 INTEGRAL Disusun oleh: Sudiarto, S.Pd, M.Pd NIP SMK NEGERI 5 JEMBER MULAI y a x 0 b.
BAHAN AJAR INTEGRAL YANG DIBUAT OLEH MUKHLIS, S.Pd VOLUME BENDA PUTAR HALAMAN DEPAN SK/KD MATERI BAHAN AJAR INTEGRAL YANG DIBUAT OLEH MUKHLIS, S.Pd LATIHAN.
Luas daerah yang dibatasi oleh kurva y = f(x)  0, sumbu x, garis x = a dan garis x = b dirumuskan: Diatas Sumbu X (+)
Transcript presentasi:

3

Materi Pokok 1. Luas Daerah 2. Volume Benda Putar

C. Metode Pembelajaran

12 Jam Pelajaran ( 4 Pertemuan )

Skenario Pembelajaran Pertemuan kelima dan Keenam Pendahuluan

Aktivitas Guru Apersepsi

Motivasi Apa anda juga ingin seperti orang ini Berusaha mendapatkan sesuatu ?

L 1 L 2 Y X a b h(x)

Lanjutannya Luas seluruhnya dirumuskan sbb L 1 L 2 Y X a b h(x)

Contoh 1 Jawab 3 1 2

Contoh 2 Jawab -1 1

B. Luas daerah antara kurva dan sumbu y c d y x P Q X = f(y)

c d o X=f(y) y x

Contoh 1 y 3 2 1 x

Contoh 2 y Y=9 B A -1 2 x

Lanjutannya

Lanjutannya

Luas daerah antara dua kurva Perhatikan gambar berikut ini y f(x) g(x) L1 L2 L3 x a b c d

Contoh 1 Jawab y x 2

Lanjutannya

Lanjutannya

Contoh 2 Jawab y Y = x x 5

Lanjutannya x y Y = x 5

Lanjutannya x y Y = x 5

Aktivitas Siswa

Penggunaan Integral Penggunaan Integral VOLUME BANGUN RUANG Kompetensi Pendahuluan Luas daerah Volume benda putar Latihan Referensi Readme Author Exit Penggunaan Integral Penggunaan Integral 9 Matematika SMA/MA Kelas XII IPA Semester 1 Berdasarkan Kurikulum Berbasis KTSP

Author Penggunaan Integral Penggunaan Integral Kompetensi Pendahuluan Luas daerah Volume benda putar Latihan Referensi Readme Author Exit Home Nama HENDRIK PICAL, A.MD,S.SOS Tempat Lahir Banjarmasin,26-10-1956 Nama Sekolah SMA KKK JAYAPURA Alamat Rumah Jl. Kabupaten Kel.bayang Kara APO CAMAT HP : 081248149394 E-mail : Hendrikpical77@yahoo.com Alamat Sekolah Jl. Ardipura I No. 50 Papua/Jayapura Telp. (0967) 533467 Fax. Jabatan Guru Matematika

Indikator Hasil Belajar Kompetensi Penggunaan Integral Penggunaan Integral Kompetensi Pendahuluan Luas daerah Volume benda putar Latihan Referensi Readme Author Exit Home Menggunakan integral untuk menghitung luas daerah dan volume benda putar. Kompetensi Dasar Setelah pembelajaran siswa diharapkan dapat : menggambarkan suatu daerah yang dibatasi oleh beberapa kurva. menentukan luas daerah dengan menggunakan limit jumlah. merumuskan integral tentu untuk luas daerah dan menghitungnya. merumuskan integral tentu untuk volume benda putar dari daerah yang diputar terhadap sumbu koordinat dan menghitungnya. Indikator Hasil Belajar

Referensi Penggunaan Integral Penggunaan Integral Kompetensi Pendahuluan Luas daerah Volume benda putar Latihan Referensi Readme Author Exit Home Abdul Karim, dkk, Geometri : Lingkaran, Semarang, 2005 Edwin J. Purcell, Kalkulus dan Geometri Analitis Jilid 1, Erlangga, Jakarta 1996 Kastolan dkk, Kompetensi Matematika SMA Kelas XII Program IPA Jilid 3A, Yudhistira, Jakarta 2005 _______, Kurikulum Berbasis Kompetensi (KBK) Tahun 2004, Depdiknas, Jakarta 2004 ________, Tutorial Maple 9.5 ________, Encarta Encyclopedia www. mathdemos.gcsu.edu www. curvebank.calstatela.edu www. clem.mscd.edu www.mathlearning.net

Readme Penggunaan Integral Kompetensi Pendahuluan Luas daerah Volume benda putar Latihan Referensi Readme Author Exit Home Media Presentasi Pembelajaran ini disusun untuk membantu guru dalam pembelajaran penggunaan integral untuk menghitung luas daerah dan volume benda putar. Pembahasan luas daerah diawali dari luas sebagai limit jumlah, dilanjutkan dengan integral tentu, dan diakhiri penggunaan integral tentu untuk menghitung luas daerah. Pembahasan volume benda putar dikaji dari bentuk partisi setelah diputar yang meliputi bentuk : cakram, cincin, dan kulit tabung. Agar dapat memahami keseluruhan materi, maka pembahasan harus dilakukan secara berurutan dimulai dari kompetensi, pendahuluan, luas daerah, dan volume benda putar. Di akhir kegiatan diberikan soal latihan. Sebaiknya dalam penggunaan media ini guru juga menyiapkan soal latihan untuk menambah pemahaman konsep dan melatih keterampilan siswa. Untuk beberapa slide guru perlu menekan tombol klik kiri agar prosedur yang diinginkan dalam slide tersebut berjalan secara berurutan.

Runtuhnya Jembatan Tacoma, Washington Pendahuluan Penggunaan Integral Penggunaan Integral Kompetensi Pendahuluan Luas daerah Volume benda putar Latihan Referensi Readme Author Exit Home Runtuhnya Jembatan Tacoma, Washington Jembatan Tacoma yang panjangnya 1,8 km di buka pada 1Juli 1940. Empat bulan kemudian jembatan tersebut runtuh karena badai yang berkekuatan 68 km/jam. Next Back

Pendahuluan Penggunaan Integral Penggunaan Integral Kompetensi Pendahuluan Luas daerah Volume benda putar Latihan Referensi Readme Author Exit Home Pilar-pilar jembatan pada gambar di atas membentuk partisi-partisi yang akan kita temukan dalam pokok bahasan menghitung luas daerah dengan menggunakan integral. Next Back

Pendahuluan Penggunaan Integral Kompetensi Pendahuluan Luas daerah Volume benda putar Latihan Referensi Readme Author Exit Home Bola lampu di samping dapat dipandang sebagai benda putar jika kurva di atasnya diputar menurut garis horisontal. Pada pokok bahasan ini akan dipelajari juga penggunaan integral untuk menghitung volume benda putar.

Pendahuluan Volume Benda Putar Volume Benda Putar Suatu daerah jika di putar mengelilingi garis tertentu sejauh 360º, maka akan terbentuk suatu benda putar. Kegiatan pokok dalam menghitung volume benda putar dengan integral adalah: partisi, aproksimasi, penjumlahan, pengambilan limit, dan menyatakan dalam integral tentu. Gb. 4 Home Next Back

Pendahuluan Volume Benda Putar Volume Benda Putar Dalam menentukan volume benda putar yang harus diperhatikan adalah bagaimana bentuk sebuah partisi jika diputar. Berdasarkan bentuk partisi tersebut, maka metode yang digunakan untuk menentukan volume benda putar dibagi menjadi : Metode cakram Metode cincin Metode kulit tabung y x 1 2 -2 -1 3 4 Next Back Home

Metode Cakram Volume Benda Putar Volume Benda Putar Metode cakram yang digunakan dalam menentukan volume benda putar dapat dianalogikan seperti menentukan volume mentimun dengan memotong-motongnya sehingga tiap potongan berbentuk cakram. Next Back Home

Metode Cakram Volume Benda Putar Volume Benda Putar Bentuk cakram di samping dapat dianggap sebagai tabung dengan jari-jari r = f(x), tinggi h = x. Sehingga volumenya dapat diaproksimasi sebagai V  r2h atau V   f(x)2x. Dengan cara jumlahkan, ambil limitnya, dan nyatakan dalam integral diperoleh: V    f(x)2 x V = lim   f(x)2 x y x a x h=x x y x Next Back Home

Metode Cakram Volume Benda Putar Volume Benda Putar Hitunglah volume benda putar yang terjadi jika daerah yang dibatasi kurva y = x2 + 1, sumbu x, sumbu y, garis x = 2 diputar mengelilingi sumbu x sejauh 360º. Contoh 7. Jawab 1 Langkah penyelesaian: Gambarlah daerahnya Buat sebuah partisi Tentukan ukuran dan bentuk partisi Aproksimasi volume partisi yang diputar, jumlahkan, ambil limitnya, dan nyatakan dalam bentuk integral. y y x 2 h=x x x x x Next Back Home

Metode Cakram Volume Benda Putar Volume Benda Putar V  r2h V  (x2 + 1)2 x V   (x2 + 1)2 x V = lim  (x2 + 1)2 x y h=x x Next Back Home

Metode Cakram Volume Benda Putar Volume Benda Putar Hitunglah volume benda putar yang terjadi jika daerah yang dibatasi kurva y = x2, sumbu y, garis y = 2 diputar mengelilingi sumbu y sejauh 360º. Contoh 8. Jawab Langkah penyelesaian: Gambarlah daerahnya Buatlah sebuah partisi Tentukan ukuran dan bentuk partisi Aproksimasi volume partisi yang diputar, jumlahkan, ambil limitnya, dan nyatakan dalam bentuk integral. y 2 y y x y h=y y x Next Back Home

Metode Cakram Volume Benda Putar Volume Benda Putar V  r2h V  (y)2 y V   y y V = lim  y y x y h=y 2 Next Back Home

Metode Cincin Volume Benda Putar Volume Benda Putar Metode cincin yang digunakan dalam menentukan volume benda putar dapat dianalogikan seperti menentukan volume bawang bombay dengan memotong-motongnya yang potongannya berbentuk cincin. Next Back Home

Metode Cincin Volume Benda Putar Volume Benda Putar Menghitung volume benda putar dengan menggunakan metode cincin dilakukan dengan memanfaatkan rumus volume cincin seperti gambar di samping, yaitu V= (R2 – r2)h Gb. 5 h r R Next Back Home

Metode Cincin Volume Benda Putar Volume Benda Putar Hitunglah volume benda putar yang terjadi jika daerah yang dibatasi kurva y = x2 dan garis y = 2x diputar mengelilingi sumbu x sejauh 360º. Contoh 9. Langkah penyelesaian: Gambarlah daerahnya Buat sebuah partisi Tentukan ukuran dan bentuk partisi Aproksimasi volume partisi yang diputar, jumlahkan, ambil limitnya, dan nyatakan dalam bentuk integral. Jawab y y y = 2x 4 2 x 2x x x2 x x Next Back Home

Metode Cincin Volume Benda Putar Volume Benda Putar V  (R2 – r2) h V   [ (2x)2 – (x2)2 ] x V   (4x2 – x4) x V    (4x2 – x4) x V = lim   (4x2 – x4) x 4 y y = 2x 2 x x r=x2 R=2x y x Next Back Home

Metode Kulit Tabung Volume Benda Putar Volume Benda Putar Metode kulit tabung yang digunakan untuk menentukan volume benda putar dapat dianalogikan seperti menentukan volume roti pada gambar disamping. Next Back Home

Metode Kulit Tabung Volume Benda Putar Volume Benda Putar h h V = 2rhΔr Δr 2r Next Back Home

Metode Kulit Tabung Volume Benda Putar Volume Benda Putar Hitunglah volume benda putar yang terjadi jika daerah yang dibatasi kurva y = x2 , garis x = 2, dan sumbu x diputar mengelilingi sumbu y sejauh 360º. Contoh 10. Jawab Langkah penyelesaian: Gambarlah daerahnya Buatlah sebuah partisi Tentukan ukuran dan bentuk partisi. Aproksimasi volume partisi yang diputar, jumlahkan, ambil limitnya, dan nyatakan dalam bentuk integral. y 1 2 3 4 x x2 x 1 2 x Next Back Home

Metode Kulit Tabung Volume Benda Putar Volume Benda Putar x 1 2 x x2 y 3 4 x 1 2 y 3 4 x r = x h = x2 V  2rhx V  2(x)(x2)x V   2x3x V = lim  2x3x Next Back Home

Metode Kulit Tabung Volume Benda Putar Volume Benda Putar Jika daerah pada contoh ke-10 tersebut dipartisi secara horisontal dan sebuah partisi diputar mengelilingi sumbu y, maka partisi tersebut membentuk cincin. Volume benda putar tersebut dihitung dengan metode cincin adalah sebagai berikut. V  (R2 – r2)y V  (4 - x2)y V   (4 – y)y V = lim  (4 – y)y x 1 2 y 3 4 y r=x R = 2 y 1 2 3 4 x 1 2 -2 -1 Home Back Next

Petunjuk : Kesempatan menjawab hanya 1 kali Latihan Penggunaan Integral Penggunaan Integral Latihan (6 soal) Petunjuk : Kesempatan menjawab hanya 1 kali Home Next Back

Latihan Penggunaan Integral Penggunaan Integral Soal 1. Luas daerah yang diarsir pada gambar di bawah ini dapat dinyatakan dalam bentuk integral sebagai .... X Y 2 4 A D B E C Home Back Next

Latihan Penggunaan Integral Penggunaan Integral Soal 1. Luas daerah yang diarsir pada gambar di bawah ini dapat dinyatakan dalam bentuk integral sebagai .... X Y 2 4 A D B E C Jawaban Anda Benar  L  (4 – x2) x L   (4 – x2) x L = lim  (4 – x2) x ( Jawaban D ) Home Next Back

Latihan Penggunaan Integral Penggunaan Integral Luas daerah yang diarsir pada gambar di bawah ini dapat dinyatakan dalam bentuk integral sebagai .... Soal 1. A B C D E X Y 2 4 x x 4 - x2 Jawaban Anda Salah  L  (4 – x2) x L   (4 – x2) x L = lim  (4 – x2) x ( Jawaban D ) Home Next Back

Latihan Penggunaan Integral Penggunaan Integral Luas daerah yang diarsir pada gambar di bawah ini sama dengan …. A B C D E Soal 2. 4,5 satuan luas 6 satuan luas 7,5 satuan luas 9 1/3 satuan luas 10 2/3 satuan luas X Y Home Back Next

Latihan Penggunaan Integral Penggunaan Integral Luas daerah yang diarsir pada gambar di bawah ini sama dengan …. A B C D E Soal 2. 4,5 satuan luas 6 satuan luas 7,5 satuan luas 9 1/3 satuan luas 10 2/3 satuan luas X Y Jawaban Anda Benar  L  (4 – x2) x L   (4 – x2) x L = lim  (4 – x2) x ( Jawaban E ) Home Next Back

Latihan Penggunaan Integral Penggunaan Integral Luas daerah yang diarsir pada gambar di bawah ini sama dengan …. A B C D E Soal 2. 4,5 satuan luas 6 satuan luas 7,5 satuan luas 9 1/3 satuan luas 10 2/3 satuan luas X Y 2 -2 x x Jawaban Anda Salah  L  (4 – x2) x L   (4 – x2) x L = lim  (4 – x2) x ( Jawaban E ) Home Next Back

Latihan Penggunaan Integral Penggunaan Integral Luas daerah yang diarsir pada gambar di bawah ini sama dengan …. A B C D E Soal 3. 5 satuan luas 7 2/3 satuan luas 8 satuan luas 9 1/3 satuan luas 10 1/3 satuan luas X Y Home Back Next

Latihan Penggunaan Integral Penggunaan Integral Soal 3. Luas daerah yang diarsir pada gambar di bawah ini sama dengan …. X Y 2 A 5 satuan luas D 9 1/3 satuan luas B 7 2/3 satuan luas E 10 1/3 satuan luas C 8 satuan luas Jawaban Anda Benar  L  (8 – x2 -2x) x ( Jawaban D ) Home Next Back

Latihan Penggunaan Integral Penggunaan Integral Luas daerah yang diarsir pada gambar di bawah ini sama dengan …. A B C D E Soal 3. 5 satuan luas 7 2/3 satuan luas 8 satuan luas 9 1/3 satuan luas 10 1/3 satuan luas X Y 2 Jawaban Anda Salah  L  (8 – x2 -2x) x ( Jawaban D ) Home Next Back

Latihan Penggunaan Integral Penggunaan Integral Luas daerah yang dibatasi oleh kurva x = y2 dan garis x + y = 2 adalah …. A B C D E Soal 4. 2,5 satuan luas 4,5 satuan luas 6 satuan luas 10 2/3 satuan luas 20 5/6 satuan luas Home Back Next

Latihan Penggunaan Integral Penggunaan Integral Luas daerah yang dibatasi oleh kurva x = y2 dan garis x + y = 2 adalah …. A B C D E Soal 4. 2,5 satuan luas 4,5 satuan luas 6 satuan luas 10 2/3 satuan luas 20 5/6 satuan luas X Y -2 1 Jawaban Anda Benar ( Jawaban B )  L  [(2 – y ) – y2 ] y Home Next Back

Latihan Penggunaan Integral Penggunaan Integral Luas daerah yang dibatasi oleh kurva x = y2 dan garis x + y = 2 adalah …. A B C D E Soal 4. 2,5 satuan luas 4,5 satuan luas 6 satuan luas 10 2/3 satuan luas 20 5/6 satuan luas X Y -2 1 Jawaban Anda Salah ( Jawaban B )  L  [(2 – y ) – y2 ] y Home Next Back

Latihan Penggunaan Integral Penggunaan Integral Daerah yang di arsir pada gambar di bawah ini diputar mengelilingi sumbu Y sebesar 360. Jika digunakan metode kulit tabung, maka bentuk integral yang menyatakan volume benda putar tersebut adalah .... A B C D E Soal 5. X Y 4 2 Home Back Next

Latihan Penggunaan Integral Penggunaan Integral Daerah yang di arsir pada gambar di bawah ini diputar mengelilingi sumbu Y sebesar 360. Jika digunakan metode kulit tabung, maka bentuk integral yang menyatakan volume benda putar tersebut adalah .... A B C D E Soal 5. X Y 4 2 Jawaban Anda Benar ( Jawaban D )  V  2xx x Home Next Back

Latihan Penggunaan Integral Penggunaan Integral Daerah yang di arsir pada gambar di bawah ini diputar mengelilingi sumbu Y sebesar 360. Jika digunakan metode kulit tabung, maka bentuk integral yang menyatakan volume benda putar tersebut adalah .... A B C D E Soal 5. X Y 4 2 x Jawaban Anda Salah ( Jawaban D )  V  2xx x Home Next Back

Latihan Penggunaan Integral Penggunaan Integral Daerah yang di arsir pada gambar di bawah ini diputar mengelilingi sumbu X sebesar 360. Volume benda putar yang terjadi adalah …. A B C D E Soal 6. 4 satuan volum 6 satuan volum 8 satuan volum 12 satuan volum 15 satuan volum X Y 4 2 Home Back Next

Latihan Penggunaan Integral Penggunaan Integral Daerah yang di arsir pada gambar di bawah ini diputar mengelilingi sumbu X sebesar 360. Volume benda putar yang terjadi adalah …. A B C D E Soal 6. 4 satuan volum 6 satuan volum 8 satuan volum 12 satuan volum 15 satuan volum X Y 4 2 Jawaban Anda Benar ( Jawaban C )  V  (x)2 x Home Back Next

Latihan Penggunaan Integral Penggunaan Integral Daerah yang di arsir pada gambar di bawah ini diputar mengelilingi sumbu X sebesar 360. Volume benda putar yang terjadi adalah …. A B C D E Soal 6. 4 satuan volum 6 satuan volum 8 satuan volum 12 satuan volum 15 satuan volum X Y 4 2 x Jawaban Anda Salah ( Jawaban C )  V  (x)2 x Home Back Next

Pada Pertemuan berikutnya Sampai Jumpa Pada Pertemuan berikutnya