Kami mohon Donasi dari saudara-saudara sekalian agar blog ini tetap MGMP MATEMATIKA SD SMP SMA SKKK JAYAPURA Kami mohon Donasi dari saudara-saudara sekalian agar blog ini tetap Eksis untuk membantu saudara-saudara sekalian agar dapat mengakses materi bahan ajar atau soal-soal dan lainnya dalam bentuk “POWERPOINT” silahkan salurkan lewat rekening Bank MANDIRI atas nama HENDRIK PICAL,A.Md,S.Sos dengan No. ac Bank 1540004492181. dan konvirmasi lewat No. HP. 081248149394. Terima Kasih.
Suku Banyak Dan Teorema Faktor
tayangan ini anda dapat Menentukan faktor, akar-akar Setelah menyaksikan tayangan ini anda dapat Menentukan faktor, akar-akar serta jumlah dan hasil kali akar-akar persamaan sukubanyak
Teorema Faktor Jika f(x) adalah sukubanyak; (x – k) merupakan faktor dari P(x) jika dan hanya jika P(k) = 0
Jika (x – k) merupakan faktor, maka nilai P(k) = 0 Artinya: Jika (x – k) merupakan faktor, maka nilai P(k) = 0 sebaliknya, 2. jika P(k) = 0 maka (x – k) merupakan faktor
Contoh 1: Tunjukan (x + 1) faktor dari x3 + 4x2 + 2x – 1 Jawab: (x + 1) faktornya, berarti P(-1) = 0 P(-1) = (-1)3 + 4(-1)2 + 2(-1) – 1 = -1 + 4 – 2 – 1 = 0 Jadi, (x + 1) adalah faktornya.
Cara lain untuk menunjukan (x + 1) adalah faktor dari x3 + 4x2 + 2x – 1 adalah dengan pembagian horner: 1 4 2 -1 koefisien -1 1 Suku banyak -1 -3 1 + 3 -1 P(-1) = 0 berarti (x + 1) faktornya artinya dikali (-1)
Contoh 2: Tentukan faktor-faktor dari P(x) = 2x3 – x2 – 7x + 6 Jawab: Misalkan faktornya (x – k), maka nilai k yang mungkin adalah pembagi bulat dari 6, yaitu
pembagi bulat dari 6 ada 8 yaitu: ±1, ±2, ±3, dan ±6. Nilai-nilai k itu kita substitusikan ke P(x), misalnya k = 1 diperoleh: P(1) = 2.13 – 1.12 – 7.1 + 6 = 2 – 1 – 7 + 6 = 0
(x – 1) adalah salah satu faktor dari P(x) = 2x3 – x2 -7x + 6 Oleh karena P(1) = 0, maka (x – 1) adalah salah satu faktor dari P(x) = 2x3 – x2 -7x + 6 Untuk mencari faktor yang lain, kita tentukan hasil bagi P(x) oleh (x – 1) dengan pembagian horner:
Hasil baginya: H(x) = 2x2 + x - 6 2 1 -6 + 2 1 -6 Koefisien sukubanyak P(x) = 2x3 – x2 – 7x + 6 adalah 2 -1 -7 6 k = 1 Hasil baginya: H(x) = 2x2 + x - 6 2 1 -6 + 2 1 -6 Koefisien hasil bagi
Karena hasil baginya adalah H(x) = 2x2 + x – 6 = (2x – 3)(x + 2) dengan demikian 2x3 – x – 7x + 6 = (x – 1)(2x2 + x – 6) 2x3 – x – 7x + 6 = (x – 1)(2x – 3)(x + 2) Jadi faktor-faktornya adalah (x – 1), (2x – 3 ) dan (x + 2)
Diketahui (x – 2) adalah faktor P(x) = 2x3 + x2 + ax - 6. Contoh 3: Diketahui (x – 2) adalah faktor P(x) = 2x3 + x2 + ax - 6. Salah satu faktor yang lainnya adalah…. a. x + 3 b. x – 3 c. x – 1 d. 2x – 3 e. 2x + 3
Jawab: Kita tentukan terlebih dahulu koefisien x2 yaitu a = ? Jika (x – 2) faktornya P(x) maka P(2) = 0 2.23 + 22 + 2a - 6 = 0 16 + 4 + 2a - 6 = 0 2a + 14 = 0 2a = -14 a = -7
berarti koefisien P(x) adalah 2 1 -7 -6 k = 2 P(x) = 2x3 + x2 - 7x - 6 berarti koefisien P(x) adalah 2 1 -7 -6 k = 2 Hasil baginya: H(x) = 2x2 + 5x + 3 = (2x + 3)(x + 1) Jadi faktor yang lain adalah 2x + 3 4 10 6 + 2 5 3 Koefisien hasil bagi
Contoh 4: a. 5 b. 6 c. 7 d.8 e.9 Sukubanyak f(x) = x3 - ax2 + bx – 2 mempunyai faktor (x – 1). Jika dibagi oleh (x + 2) bersisa -36, maka nilai a + b adalah…. a. 5 b. 6 c. 7 d.8 e.9
Jawab: (-2)3 – a(-2)2 + b(-2) – 2 = -36 Sukubanyak f(x) = x3 - ax2 + bx – 2 (x – 1) faktor f(x) → f(1) = 0 1 – a + b – 2 = 0 -a + b = 1….(1) dibagi (x + 2) bersisa -36, f(-2) = -36 (-2)3 – a(-2)2 + b(-2) – 2 = -36
(-2)3 – a(-2)2 + b(-2) – 2 = -36 - 8 – 4a – 2b – 2 = -36 - 4a – 2b = -36 + 10 -4a – 2b = -26 2a + b = 13….(2)
Persamaan (1): -a + b = 1 Persamaan (2): 2a + b = 13 -3a = -12 a = 4 b = 1 + 4 = 5 Jadi nilai a + b = 4 + 5 = 9
Akar-akar Rasional Persamaan Sukubanyak Salah satu penggunaan teorema faktor adalah mencari akar-akar sebuah persamaan sukubanyak, karena ada hubungan antara faktor dengan akar-akar persamaan sukubanyak
Jika P(x) adalah sukubanyak; (x – k) merupakan faktor dari P(x) jika dan hanya jika k akar dari persamaan P(k) = 0 k disebut akar atau nilai nol dari persamaan sukubanyak: P(x) = 0
Teorema Akar-akar Rasional Jika P(x) =anxn + an-1xn-1 + …+ a1x + ao dan (x – k) merupakan faktor dari P(x) maka
Contoh 1: Tunjukan -3 adalah salah satu akar dari x3 – 7x + 6. Kemudian tentukan akar-akar yang lain. Jawab: Untuk menunjukan -3 akar dari P(x), cukup kita tunjukan bahwa P(-3) = 0
P(x) = x3 – 7x + 6. P(-3) = (-3)3 – 7(-3) + 6 = -27 + 21 + 6 = 0 Oleh karena P(-3) = 0, maka -3 adalah akar dari Persamaan P(x) = x3 – 7x + 6 = 0
kita tentukan terlebih dahulu hasil bagi Untuk menentukan akar-akar yang lain, kita tentukan terlebih dahulu hasil bagi P(x) = x3 – 7x + 6 dengan x + 3 dengan pembagian Horner sebagai berikut
berarti koefisien P(x) adalah 1 0 -7 6 k = -3 P(x) = x3 – 7x + 6 berarti koefisien P(x) adalah 1 0 -7 6 k = -3 Hasil baginya: H(x) = x2 – 3x + 2 =(x – 1)(x – 2) -3 9 -6 + 1 -3 2 Koefisien hasil bagi
Hasil baginya: H(x) = x2 – 3x + 2 = (x – 1)(x – 2) sehingga persamaan sukubanyak tsb dapat ditulis menjadi (x + 3)(x – 1)(x – 2) = 0. Jadi akar-akar yang lain adalah x = 1 dan x = 2
Contoh 2: Banyaknya akar-akar rasional dari persamaan x4 – 3x2 + 2 = 0 adalah…. a. 4 b. 3 c. 2 d.1 e.o
Jawab: Karena persamaan sukubanyak berderajat 4, maka akar-akar rasionalnya paling banyak ada 4 yaitu faktor-faktor bulat dari 2. Faktor-faktor bulat dari 2 adalah 1, -1, 2 dan -2
Dari 4 kemungkinan yang akan menjadi akar-akar rasional persamaan sukubanyak tsb, kita coba nilai 1 Koefisien x4 – 3x2 + 6 = 0 adalah 1, 0, -3, 0, dan 6
1 0 -3 0 2 k = 1 Ternyata P(1) = 0, berarti 1 adalah akar rasionalnya, Selanjutnya kita coba -1. Koefisien hasil bagi: 1,1,-2, dan -2 1 1 -2 -2 + 1 -2 1 -2
1 1 -2 -2 k = -1 Ternyata P(-1) = 0, berarti -1 adalah akar rasionalnya, Sehingga: (x – 1)(x + 1)(x2 – 2) = 0 -1 2 + 1 -2
(x – 1)(x + 1)(x2 – 2) = 0 (x2 – 2) difaktorkan lagi menjadi (x - √2)(x + √2) = 0 Berarti akar yang lain: √2 dan -√2, tapi bukan bilangan rasional. Jadi akar-akar rasionalnya hanya ada 2 yaitu 1 dan -1.
Jumlah dan Hasil Kali Akar-akar Persamaan Sukubanyak
Persamaan Sukubanyak: Jika akar-akar Persamaan Sukubanyak: ax3 + bx2 + cx + d = 0 adalah x1, x2, dan x3 maka x1 + x2 + x3 = x1.x2 + x1.x3 + x2.x3 = x1.x2.x3 =
Contoh 1: Jumlah akar-akar persamaan x3 – 3x2 + 2 = 0 adalah…. Jawab: a = 1, b = -3, c = 0, d = 2 x1 + x2 + x3 = = = 3
Contoh 2: Hasilkali akar-akar persamaan 2x3 – x2 + 5x – 8 = 0 adalah…. Jawab: a = 2, b = -1, c = 5, d = -8 x1.x2.x3 = = = 4
Contoh 3: Salah satu akar persamaan x3 + px2 – 3x – 10 = 0 adalah -2 Jumlah akar-akar persamaan tersebut adalah….
Jawab: -2 adalah akar persamaan x3 + px2 – 3x - 10 = 0 → -2 memenuhi persamaan tsb. sehingga: (-2)3 + p(-2)2 – 3(-2) - 10 = 0 -8 + 4p + 6 – 10 = 0
-8 + 4p + 6 – 10 = 0 4p – 12 = 0 4p = 12 p = 3 Persamaan tersebut: x3 + 3x2 – 3x – 10 = 0 Jumlah akar-akarnya: x1 + x2 + x3 = = = -3
Contoh 4: Akar-akar persamaan x3 – 4x2 + x – 4 = 0 adalah x1, x2, dan x3. Nilai x12 + x22 + x32 =….
Jawab: x12 + x22 + x32 = (x1 + x2 + x3)2 - 2(x1x2 + x1x3 + x2x3) x3 – 4x2 + x – 4 = 0 x1 + x2 + x3 = -(-4)/1 = 4 x1x2 + x1x3 + x2x3 = 1/1 = 1
x1 + x2 + x3 = 4 x1x2 + x1x3 + x2x3 = 1 Jadi: x12 + x22 + x32 = (x1 + x2 + x3)2 - 2(x1x2 + x1x3 + x2x3) = 42 – 2.1 = 16 – 2 = 14
Pada Pertemuan berikutnya Sampai Jumpa Pada Pertemuan berikutnya