GRUP BAGIAN
Grup Bagian Sistem aljabar yang besar biasanya mengandung sistem bagian yang lebih kecil. Sistem yang lebih kecil mungkin lebih penting dan mungkin membangun sistim yang lebih besar. Sebagai contoh grup < R, + > mengandung grup yang lebih kecil seperti < Q , + > dan < Z , + >. Dengan cara yang sama C* = C – { 0 } mengandung R* = R – { 0 }. Contoh-contoh di atas menyarankan bahwa di samping tipe tertentu dari sistim juga dipelajari sistim bagian ( subsystem ) sehingga dalam penelaahan grup juga dibahas tentang sistim bagiannya yang dinamakan grup bagian.
Definisi III.1 Suatu grup bagian S dari grup G adalah himpunan dari bagian G yang merupakan grup di bawah operasi yang sama dalam G yang dibatasi pada S. Contoh III.1 Himpunan bilangan bulat Z merupakan grup bagian dari R. S = { 0,2,4 } merupakan grup bagian dari Z6. Z6 bukan grup bagian dari Z12.
Teorema III.1 Diketahui S himpunan bagian dari grup G dengan elemen identitas e. Himpunan S merupakan grup bagian dari G jika dan hanya jika memenuhi sifat : 1. e S, 2. S tertutup di bawah operasi dari G , 3. untuk sebarang x S, inversnya x-1 terletak dalam S.
Contoh III.2 Q* = { p/q | p dan q tidak nol dalam Z } merupakan grup bagian dari R*. Himpunan bilangan genap E merupakan grup bagian dari Z. S = { 3k | k Z } merupakan grup bagian dari R*.
Soal III.1 : Tentukan grup bagian dari Z4 yang dibangun oleh 2. Jawab : Grup Z4 = { 0, 1, 2, 3 } merupakan grup terhadap operasi penjumlahan modulo 4. Elemen 2 dalam Z4 sehingga grup bagian yang dibangun oleh 2 adalah (2) = { k . 2 | k Z} = { 0, 2 }.
Soal III.2 Tentukan grup bagian dari R yang dibangun oleh 1. Jawab : Grup R merupakan grup terhadap operasi penjumlahan. Elemen 1 dalam R sehingga grup bagian yang dibangun oleh 1 adalah (1) = { k . 1 | k Z} = { ….., -3, -2, -1, 0, 1, 2, 3, …… } = Z. Hal itu berarti grup bagian yang dibangun oleh 1 dalam R adalah himpunan bilangan bulat Z.
Latihan Grup Bagian
Latihan Grup Bagian (lanjutan)
TERIMA KASIH