4.Menggunakan aturan suku banyak dalam penyelesai an masalah

Slides:



Advertisements
Presentasi serupa
MATEMATIKA SMA KELAS X Selamat belajar PERSAMAAN KUADRAT.
Advertisements

PERSAMAAN dan PERTIDAKSAMAAN
Multimedia Pendidikan Matematika
Menyusun Persamaan Kuadrat
THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM
BAB I SUKU BANYAK.
BENTUK LOGARITMA Berikut ini sifat-sifat pokok logaritma yang diperlukan untuk memecahkan berbagai soal yang berkaitan dengan logaritma. Teorema 1.1 Jika.
Kelompok anike putri. 2. anisa aprilia yusra. 3. khairul. 4
Oleh : Hayani Hamudi, S.Pd
Nama Bhokasepteano ( ).
KD 4.1. SUKU BANYAK (POLYNOMS)
PERSAMAAN DAN FUNGSI KUADRAT
PERSAMAAN & FUNGSI KUADRAT.
1. 7 Faktorisasi Persamaan Kuadrat, ax2 + bx + c dengan a 1
BAB III LIMIT FUNGSI DAN KEKONTINUAN.
PEMBAGIAN SUKU BANYAK OLEH BENTUK KUADRAT
ALJABAR UMUM RATNI PURWASIH, M.PD.
Suku Banyak Dan Teorema Sisa Oleh Sujinal Arifin.
Kami mohon Donasi dari saudara-saudara sekalian agar blog ini tetap MGMP MATEMATIKA SD SMP SMA SKKK JAYAPURA Kami mohon Donasi dari saudara-saudara.
C. Pembagian Suku Banyak 2. Cara Pembagian dengan Horner
SUKUBANYAK SEMESTER 2 KELAS XI IPA 4
Interpolasi Polinomial Metode Numerik
MATEMATIKA SMA/SMK KELAS X
Persamaan Kuadrat Surakarta, 21 Mei 2013.
Suku Banyak Matematika SMA Kelas XI Semester 2 Oleh : Mazhend
PERTIDAKSAMAAN.
Pembelajaran M a t e m a t i k a .... MATEMATIKA SMU
SUKUBANYAK SMA ISLAM AL- IZHAR PONDOK LABU Bagian 1
BAB 6 PERTIDAKSAMAAN.
PERSAMAAN KUADRAT OLEH : SMA KKK JAYAPURA.
BAB 4 FUNGSI KUADRAT.
SUKUBANYAK SEMESTER 2 KELAS XI IPA Tujuan: 1
MEDIA PEMBELAJARAN BERBASIS IT
BAB 3 PERSAMAAN KUADRAT.
Kami mohon Donasi dari saudara-saudara sekalian agar blog ini tetap MGMP MATEMATIKA SD SMP SMA SKKK JAYAPURA Kami mohon Donasi dari saudara-saudara.
Polinomial Tujuan pembelajaran :
SUKU BANYAK Standar Kompetensi
PEMFAKTORAN 2x – 2y =2(x - y) a2 + 2ab + b2 = (a + b)2
PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT
Ini Hanya Terdiri dari beberapa soal yang tergolong Susah Serta Rangkuman Rumus Soal Soal Matematika M.Rifqi Rafian P.
Fungsi Persamaan, dan Pertidaksamaan Kuadrat
Matematika Pertemuan 14 Matakuliah : D0024/Matematika Industri II
Ring Polinomial.
Suku Banyak dan Teorema Faktor Kelas XI IPA/IPS Semester 2.
SISTEM PERSAMAAN LINEAR DAN KUADRAT
P O L I N O M I A L (SUKU BANYAK) Choirudin, M.Pd.
Cara Cepat Mencari Invers Fungsi -feriyanto x MIPA 1-
Persamaan Linier Metode Regula Falsi
PERSAMAAN KUADRAT DAN FUNGSI KUADRAT
PERSAMAAN POLINOMIAL.
Suku Banyak SMA N I NOGOSARI DISUSUN OLEH : IKHSAN DWI SETYONO
RIDHA AMALIAH YUSRIANA THAMRIN RAHMI IBRAHIM ADAUS.
PENYELESAIAN PERSAMAAN KUADRAT
FUNGSI & GRAFIKNYA 2.1 Fungsi
MATEMATIKA SMU Kelas I – Semester 1 BAB 1
BAB 5 Sukubanyak.
A. Sistem Persamaan Linier dan Kuadrat
MATEMATIKA SMU Kelas I – Semester 1 BAB 1
Peta Konsep. Peta Konsep B. Sistem Persamaan Kuadrat dan Kuadrat.
SUKUBANYAK SMA ISLAM AL- IZHAR PONDOK LABU Bagian 2
Peta Konsep. Peta Konsep A. Sistem Persamaan Linier dan Kuadrat.
Peta Konsep. Peta Konsep B. Komposisi Fungsi.
B. Sistem Persamaan Kuadrat dan Kuadrat
Peta Konsep. Peta Konsep C. Invers Fungsi.
Persiapan Ujian Nasional SMA
Persamaan Lingkaran dan Garis Singgung
Peta Konsep. Peta Konsep A. Sistem Persamaan Linier dan Kuadrat.
FUNGSI KUADRAT Oleh : DAME RAMADHONA PPGDJ UPGRI PALEMBANG.
POLYNOMIAL (suku banyak)
INTEGRAL (Integral Tertentu)
Transcript presentasi:

4.Menggunakan aturan suku banyak dalam penyelesai an masalah Standar Kompetensi 4.Menggunakan aturan suku banyak dalam penyelesai an masalah

Kompetensi Dasar 4.2 Menggunakan teorema sisa dan teorema faktor dalam pemecahan masalah

Indikator Menentukan sisa pembagian suku-banyak oleh bentuk linear dan kuadrat dengan teorema sisa. Menentukan faktor linear dari suku-banyak dengan teorema faktor. Menyelesaikan persamaan suku-banyak dengan menggunakan teorema faktor Membuktikan teorema sisa dan teorema faktor 1 2 3 4

TEOREMA SISA dan TEOREMA FAKTOR Teorema Sisa untuk Pembagian Bentuk Linear Teorema Sisa : 1.Jika suatu suku banyak f(x) dibagi oleh pembagi linear berbentuk (x – k), maka sisanya adalah s = f(k). 2.Jika suatu suku banyak f(x) dibagi oleh pembagi linear berbentuk (ax + b), maka sisanya adalah s = Bukti : f(x) = (x – k).H(x) + s Jika x = k, maka f(k) = (k – k).H(k) + s f(k) = 0.H(k) + s f(k) = 0 + s  Sisa s = f(k) (terbukti)

Jadi sisa suku banyak di atas adalah 79 Contoh soal : 1. Tentukan sisa pembagian suku banyak (3x4+4x3–x2+5x– 7) oleh (x – 2) Jawab : S = f(2) = 3.24 + 4.23 – 22 + 5.2 – 7 = 3.16 + 4.8 – 4 + 10 – 7 = 3.16 + 4.8 – 4 + 10 – 7 = 48 + 32 – 1 = 79 Jadi sisa suku banyak di atas adalah 79 2. Suku banyak (2x3 + ax2 + bx – 2) memberikan sisa 7 jika dibagi (2x – 3) dan habis dibagi oleh (x + 2). Tentukan nilai a + b !

Jawab : f(x) = (2x3 + ax2 + bx – 2) s = 7 jika dibagi (2x – 3) 2. Suku banyak (2x3 + ax2 + bx – 2) memberikan sisa 7 jika dibagi (2x – 3) dan habis dibagi oleh (x + 2). Tentukan nilai a + b ! Jawab : f(x) = (2x3 + ax2 + bx – 2) s = 7 jika dibagi (2x – 3)  s = = 7 s = = 2 + a + b – 2 = 7 x 4 27 + 9a + 6b = 36 9a + 6b = 9 : 3 3a + 2b = 3 ......(1) f(x) habis dibagi (x + 2)  s = f(– 2) = 0 s = f(– 2) = 2(– 2)3+ a(– 2)2+ b(– 2) – 2 = 0 s = f(– 2) = – 16 + 4a – 2b – 2 = 0

Jadi a + b = 3 + (– 3) = 0 s = f(– 2) = – 16 + 4a – 2b – 2 = 0 : 2 2a – b = 9 ….......(2) Dari persamaan (1) dan (2), kita cari nilai a dan b : (1)….3a + 2b = 3 x 1 x 2 3a + 2b = 3 (2)….2a – b = 9 4a – 2b = 18 + 7a = 21 a = 3 Untuk menentukan nilai b, substitusikan a = 3 pada persamaan (1) atau (2)  (2)…. 2 . 3 – b = 9  b = – 3 Jadi a + b = 3 + (– 3) = 0

f(x) = (x–a)(x – b) . H(x) + s(x) f(x) = (x–a)(x – b) . H(x) + (px+q) Teorema Sisa untuk Pembagian Bentuk Kuadrat yang dapat difaktorkan (x – a)(x – b) Algoritma Pembagian Suku Banyak oleh (x – a)(x – b) Jika fungsi suku banyak f(x) dibagi oleh (x–a)(x – b), selalu dapat dituliskan : f(x) = p(x) . H(x) + s f(x) = (x–a)(x – b) . H(x) + s(x) f(x) = (x–a)(x – b) . H(x) + (px+q) P adalah koefisien x dan q adalah konstanta Untuk menentukan nilai p dan q lakukan kegiatan 5.2 pada hal. 173

Sehingga didapatkan : Jadi : Contoh soal : Jawab : Tentukan sisa pembagian suku banyak (3x4+4x3–x2+5x– 7) oleh x2 + x – 6 ! Jawab : F(x) = (3x4+4x3–x2+5x– 7) P(x) = x2 + x – 6 = (x – 2)(x + 3)  a = 2 dan b = - 3

Jadi :

Jadi : Jawab : F(x) = (3x4+4x3–x2+5x– 7) P(x) = x2 + x – 6 = (x – 2)(x + 3)  a = 2 dan b = - 3 f(a) = f(2) = 3.24 + 4.23 – 22 + 5.2 – 7 = 48 + 32 – 4 + 10 – 7 = 79 f(b) = f(- 3) = 3.(- 3)4 + 4. (- 3)3 – (- 3)2 + 5. (- 3) – 7 = 243 – 108 – 9 – 15 – 7 = 104 Jadi :

Teorema Faktor 1.Suatu fungsi suku banyak f(x) memiliki faktor (x – k) jika dan hanya jika f(k) = 0. 2.Suatu fungsi suku banyak f(x) memiliki faktor (ax + b) jika dan hanya jika = 0 Contoh soal : Buktikan bahwa (x – 2) dan (x + 3) adalah faktor-faktor dari suku banyak (2x4 + 7x3 – 4x2 – 27x – 18) ! Bukti : f(x) = (2x4 + 7x3 – 4x2 – 27x – 18) (x – 2) faktor dari (2x4 + 7x3 – 4x2 – 27x – 18) maka f(2) = (2.24 + 7.23 – 4.22 – 27.2 – 18)

Karena f(2) = 0, maka (x – 2) adalah faktor dari f(x) Terbukti f(x) = (2x4 + 7x3 – 4x2 – 27x – 18) (x – 2) faktor dari (2x4 + 7x3 – 4x2 – 27x – 18) maka f(2) = (2.24 + 7.23 – 4.22 – 27.2 – 18) = (32 + 56 – 16 – 54 – 18) = 0 Karena f(2) = 0, maka (x – 2) adalah faktor dari f(x) Terbukti (x + 3) faktor dari (2x4 + 7x3 – 4x2 – 27x – 18) maka f(-3) = (2.(-3)4 + 7.(-3)3 – 4.(-3)2 – 27.(-3) – 18) = (162 – 189 – 36 + 81 – 18) = 0 Karena f(-3) = 0, maka (x + 3) adalah faktor dari f(x) Terbukti

Menyelesaikan Persamaan Suku Banyak Menentukan Faktor Linear dari Suku Banyak Jika f(x) = a0xn + a1xn-1 + … + an-1x + an dan (x – a) merupakan faktor dari f(x), maka nilai a yang mungkin adalah faktor-faktor bulat dari an Contoh soal : Tentukan faktor-faktor dari suku banyak (2x3 – 5x2 – 14x + 8) Jawab : f(x) = 2x3 – 5x2 – 14x + 8 Nilai a yang mungkin adalah ±8, ±4, ±2, ±1 Dengan cara trial and error, tentukan nilai a yang mungkin dengan mensubstitusikan ke dalan f(x) sehingga f(a) = 0

Contoh soal : Tentukan faktor-faktor dari suku banyak (2x3 – 5x2 – 14x + 8) Jawab : f(x) = 2x3 – 5x2 – 14x + 8 Nilai a yang mungkin adalah ±8, ±4, ±2, ±1 Dengan cara trial and error, tentukan nilai a yang mungkin dengan mensubstitusikan ke dalan f(x) sehingga f(a) = 0 Untuk a = -2  f(- 2) = 0, sehingga (x + 2) merupakan faktor dari f(x) Untuk menentukan faktor-faktor yang lain dapat dilakukan dengan cara HORNER sebagai berikut :

2 – 5 – 14 8 18 x = – 2 – 4 – 8 + 2 – 9 4  f(-2) Sehingga : f(x) = (x – k).H(x) + s 2x3 – 5x2 – 14x + 8 = (x + 2).(2x2 – 9x + 4) + 0 2x3 – 5x2 – 14x + 8 = (x + 2).(2x – 1)(x – 4) Jadi faktor dari 2x3 – 5x2 – 14x + 8 adalah (x + 2), (2x – 1) dan (x – 4)

Menyelesaikan Persamaan Suku Banyak Contoh soal : Selesaikan persamaan suku banyak 2x3 – 5x2 – 14x + 8 = 0 Jawab : f(x) = 2x3 – 5x2 – 14x + 8 Nilai a yang mungkin adalah ±8, ±4, ±2, ±1 Dengan cara trial and error, tentukan nilai a yang mungkin dengan mensubstitusikan ke dalan f(x) sehingga f(a) = 0 Untuk a = -2  f(- 2) = 0, sehingga (x + 2) merupakan faktor dari f(x) Untuk menentukan faktor-faktor yang lain dapat dilakukan dengan cara HORNER sebagai berikut :

2 – 5 – 14 8 18 x = – 2 – 4 – 8 + 2 – 9 4  f(-2) f(x) = (x – k).H(x) + s (x + 2).(2x2 – 9x + 4) + 0 2x3 – 5x2 – 14x + 8 = (x + 2).(2x – 1)(x – 4) Sehingga : 2x3 – 5x2 – 14x + 8 = Jadi faktor dari 2x3 – 5x2 – 14x + 8 adalah (x + 2), (2x – 1) dan (x – 4)

Pembagian Suku Banyak Algoritma Pembagian Suku Banyak oleh (x – k) Hitunglah 1.256 dibagi 3 dengan cara bersusun ! Algoritma Pembagian Suku Banyak oleh (x – k) 1. Cara bersusun Contoh soal : Tentukan pembagian suku banyak f(x) = 3x4 + 4x3 – x2 + 5x – 7 dibagi (x – 2) ! Jawab : 3x3 + 10x2 + 19x (x – 2) 3x4 + 4x3 – x2 + 5x – 7 3x4 – 6x3 - 10x3 – x2 + 5x – 7 10x3 – 20x2 - 19x2 + 5x – 7 19x2 – 38x -

Jadi hasil baginya = 3x3 + 10x2 + 19x + 43 dan sisanya adalah 79 3x4 + 4x3 – x2 + 5x – 7 3x4 – 6x3 - pembagi 10x3 – x2 + 5x – 7 10x3 – 20x2 - 19x2 + 5x – 7 19x2 – 38x - 43x – 7 43x – 86 - 79  sisa Jadi hasil baginya = 3x3 + 10x2 + 19x + 43 dan sisanya adalah 79

2. Cara Bagan/Horner/Sintetis : Contoh soal : Tentukan pembagian suku banyak f(x) = 3x4 + 4x3 – x2 + 5x – 7 dibagi (x – 2) ! Jawab : 3 4 - 1 5 - 7 x = 2 6 20 38 86 + 3 10 19 43 79  Sisa Koefisien Hasil Bagi Jadi hasil baginya = 3x3 + 10x2 + 19x + 43 dan sisanya adalah 79

Pembagian Suku Banyak Algoritma Pembagian Suku Banyak oleh (ax+b) 1. Cara bersusun Contoh soal : Tentukan pembagian suku banyak f(x) = 6x4 – 4x2 + 2x – 1 dibagi (2x + 4) ! Jawab : 3x3 – 6x2 + 10x (2x + 4) 6x4 + 0x3 – 4x2 + 2x – 1 6x4 + 12x3 - – 12x3 – 4x2 + 2x – 1 – 12x3 – 24x2 - 20x2 + 2x – 1 20x2 + 40x -

Jadi hasil baginya = 3x3 - 6x2 + 10x -19 dan sisanya adalah 75 – 19  Hasil bagi (2x + 4) 6x4 + 0x3 – 4x2 + 2x – 1 6x4 + 12x3 - pembagi – 12x3 – 4x2 + 2x – 1 – 12x3 – 24x2 - 20x2 + 2x – 1 20x2 + 40x - – 38x – 1 – 38x – 76 - 75  sisa Jadi hasil baginya = 3x3 - 6x2 + 10x -19 dan sisanya adalah 75 6x4 – 4x2 + 2x – 1= (2x + 4)(3x3 - 6x2 + 10x -19) + 75

2. Cara Bagan/Horner/Sintetis : Contoh soal : Tentukan pembagian suku banyak f(x) = 6x4 – 4x2 + 2x – 1 dibagi (2x + 4) ! Jawab : 6 – 4 2 – 1 x = – 2 – 12 24 – 40 76 + 6 – 12 20 – 38 75  Sisa H(x) = = 3x3 – 6x2 + 10x – 19 Jadi hasil baginya : H(x) = 3x3 – 6x2 + 10x – 19 dan sisanya adalah f(– 2) = 75

Pembagian Suku Banyak Algoritma Pembagian Suku Banyak oleh (ax2+ bx + c) 1. Cara bersusun Contoh soal : Tentukan pembagian suku banyak f(x) = 4x4 – 5x2 + 3x – 1 dibagi (2x2 + x – 1) ! Jawab : 2x2 – x – 1  Hasil bagi (2x2 + x – 1) 4x4 + 0x3 – 5x2 + 3x – 1 4x4 + 2x3 – 2x2 pembagi - – 2x3 – 3x2 + 3x – 1 – 2x3 – x2 + x - – 2x2 + 2x – 1 – 2x2 – x + 1 - 3x – 2  sisa

Diskusikan dan kerjakan!!!! 2. Cara Bagan/Horner/Sintetis : Contoh soal : Tentukan pembagian suku banyak f(x) = 4x4 – 5x2 + 3x – 1 dibagi (2x2 + x – 1) ! Jawab : Diskusikan dan kerjakan!!!!