I. SISTEM BILANGAN BINER

Slides:



Advertisements
Presentasi serupa
MATERI PROFIL Pendidikan Matematika  Dimas Angga N.S  Nur Indah Sari  Latifatul Karimah  Idza Nudia Linnusky next
Advertisements

PERTEMUAN MINGGU KE-4 REPRESENTASI DATA.
I. SISTEM BILANGAN BINER
PERTEMUAN MINGGU KE-3 REPRESENTASI DATA.
Sistem Bilangan.
Sistem – Sistem Bilangan, Operasi dan kode
Sistem Bilangan Dan Pengkodean
Elektronika dan Instrumentasi: Elektronika Digital 1 – Sistem Bilangan
BILANGAN POSITIF & NEGATIF
Sistem Bilangan Dasar pemrograman mikroprosesor Tipe : Biner Oktal
Sistem Bilangan.
Chayadi Oktomy Noto Susanto, S.T, M.Eng. 2 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Melakukan proses konversi untuk.
Representasi data Dan Sistem Bilangan
ORGANISASI DATA.
1 Kuliah Rangkain Digital Kuliah 3 : Sistem Bilangan Teknik Komputer Universitas Gunadarma.
Organisasi dan Arsitektur Komputer
Pertemuan 2 Sistem Bilangan
Konversi Bilangan Mulyono.
1 Pertemuan 2 Sistem Bilangan Matakuliah: T0483 / Bahasa Rakitan Tahun: 2005 Versi: versi 1.0 / revisi 1.0.
BAB V b SISTEM PENGOLAHAN DATA KOMPUTER (Representasi Data)
ARCHITECTURE COMPUTER
MK SISTEM DIGITAL SESI II SISTEM BILANGAN
SISTEM DIGITAL PENDAHULUAN Minggu 1.
Pengantar Teknologi Informasi
Penggunaan Sistem Bilangan dan Pengkodean -3- Sistem Digital
PENGANTAR TEKNOLOGI KOMPUTER & INFORMASI – A
Operasi dalam sistem bilangan
PTI Semester Ganjil Lec 2. SISTEM BILANGAN.
SISTEM BILANGAN.
Flag Register.
PERTEMUAN 5 PENGKODEAN.
SISTEM BILANGAN dan BENTUK DATA dalam KOMPUTER
PENGANTAR TEKNOLOGI KOMPUTER & INFORMASI – A
Sistem Bilangan dan Kode
Sistem Bilangan dan Konversi Bilangan
Arsitektur Komputer Genap 2004/2005
ORGANISASI dan ARSITEKTUR KOMPUTER
Representasi Bilangan
Aritmetik Digital #11 Teknik Digital (IF) 2015.
PERTEMUAN MINGGU KE-4 REPRESENTASI DATA.
PERTEMUAN MINGGU KE-3 REPRESENTASI DATA.
REPRESENTASI BILANGAN
BILANGAN POSITIF & NEGATIF
UNIVERSITAS GUNADARMA
TEKNIK DIGITAL BAB II Sistem Bilangan dan Sistem Kode Oleh : M
SUPLEMEN MASA DEPAN KULIAH ORGANISASI DAN ARSITEKTUR KOMPUTER
(Number Systems & Coding)
Materi Kuliah ke-2 SISTEM BILANGAN
PERTEMUAN MINGGU KE-3 REPRESENTASI DATA.
Sistem Bilangan.
SISTEM DIGITAL PENDAHULUAN.
BAB V b SISTEM PENGOLAHAN DATA KOMPUTER (Representasi Data)
PERTEMUAN MINGGU KE-4 REPRESENTASI DATA OLEH SARI NY.
Sistem Bilangan Temu 2.
Sistem Bilangan Mata Kuliah :Sistem Digital Moh. Furqan, S.Kom
SISTEM BILANGAN DAN KODE BILANGAN
Kuliah 1 : Sistem Bilangan
Konversi Bilangan Temu 3.
S ISTEM B ILANGAN DAN ARITMATIKA BILANGAN Disusun Oleh Kelompok : I (satu) Nama : Danil Eka. P. M ( ) Yogie. M. L ( ) Lidya Novesia ( )
Sistem-Sistem Bilangan
Sistem-Sistem Bilangan
PERTEMUAN MINGGU KE-3 REPRESENTASI DATA.
Andang, Elektronika Komputer Digital
BILANGAN FLOATING-POINT
Sistem Bilangan Temu 2.
SISTEM BILANGAN.
Konversi Bilangan Lanjutan
Sistem Bilangan Dan Pengkodean
Binary Coded Decimal Temu 7.
Transcript presentasi:

I. SISTEM BILANGAN BINER A. PENDAHULUAN Elektronika digital secara luas dibuat menggunakan sistem bilangan biner dan dinyatakan digit 1 dan 0. Digit biner digunakan untuk menunjukan dua keadaan level tegangan, HIGH atau LOW. Sebagian besar sistem digital level HIGH direpresentasikan oleh 1 atau ON dan level LOW direpresentasikan oleh 0 atau OFF.

Pengertian Sinyal Kontinu Panas ( Temperatur ), Cahaya ( Intensitas ) dan lain – lain. Pengertian Sinyal Digital Bilangan, Abjad dan lain – lain. Pengertian logika pada sistem digitasi Membentuk rangkaian yang dapat berfungsi memproses sinyal digital.

B. BILANGAN BINER Sistem bilangan biner adalah susunan bilangan yang mempunyai basis 2 sebab sistem bilangan ini menggunakan dua nilai koefisien yang mungkin yaitu 0 dan 1. C. KONVERSI BILANGAN Secara umum ekspresi sistem bilangan basis–r mempunyai perkalian koefisien oleh pangkat dari r.

Lanjutan … anrn + a n-1 r n-1 + … + a2r2 + a1r1 + a0r0 + a-1 r -1 + a-2 r-2 + … Contoh. 1.1 Konversi bilangan n berbasisi r ke desimal 11010,112 = 1.24 + 1.23 + 0.22 + 1.21 + 0.20 1.2-1 + 1.2-2 = 26,7510 4021,25 = 4.53 + 0.52 + 2.51 + 1.50 + 2.5-1 = 511,410 Tabel 1-1

Lanjutan … Tabel 1-1 Bilangan dengan basis yang berbeda Decimal ( base 10 ) Binary ( base 2) Octal ( base 8 ) Hexadecimal ( base 16 ) 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 16 17 1 2 3 4 5 6 7 8 9 A B C D E F

Contoh (1.2) Konversi ke biner 4110 = Integer Reminder 41 42/2 = 20 1 20/2 = 10 0 10/2 = 5 0 5 / 2 = 2 1 2 / 2 = 1 0 1 / 2 = 0 1 4110 = 1010012

Lanjutan .……. 0,37510 = Integer Reminder 0,375 x 2 = 0 0,75 0,37510 = 0, 0112

D. BILANGAN OCTAL DAN HEXADECIMAL OCTAL adalah sistem bilangan dengan basis –8 atau 8 digit yang dinyatakan oleh 0,1,2,3,4,5,6,7. Sedangkan HEXADECIMAL adalah sistem bilangan dengan basis-16 atau 16 digit yang dinyatakan 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. Pada konversi dari dan ke biner, setiap digit Octal koresponden ke tiga digit biner sedangkan setiap digit Hexadecimal koresponden ke empat digit biner.

Contoh 1.3 Konversi dari biner ke Octal dan ke Hexadecimal 10 110 001 101 011, 111 1002 = 26153, 748 2 6 1 5 3 7 4 10 1110 0110 1011, 1111 00102 = 2C6B,F216 2 C 6 B F 2

Contoh 1.4 Konversi dari Octal dan Hexadecimal ke biner 673,1248 = 110 111 011, 001 010 1002 6 7 3 1 2 4 306,D16 = 0011 0000 0110, 11012 3 0 6 D

A. COMPLEMENT a. Binary 1’s complement for substraction To take the 1’s complement of binary number, Sweply change each bit. The 1’s complement of 1 is 0 and vice versa. The 1’s complement of 1001010 is 0110101. To substract 1’s complement : 1. Take the 1’s complement of the substrahend ( bottom number ) 2. Add the 1’s complement to the minu end ( top number ) 3. Overflow indicated that the answers is positive. Add the overflow to the least significant bit. This operation is called end – around carry ( EAC ).

Lanjutan … 4.If there is no overflow then the answers is negatif. Tahe the 1’s complement of the original addition to obtain the true magnitude of the answer.

Contoh. 2-1 Substract 110012 – 100012 Jawab : 11001 11001 -10001 + 01110 1 00111 00111 + 1 1000 Jawabannya adalah : +1000 Periksa : 2510 – 1710 = 810 EAC - + + Overflow

Contoh. 2-1 ( Lanjutan ) 2. Substract 100002 – 111012 Jawab : 10000 10000 11101 00010 10010 - 01101 Jawabannya adalah : - 1101 Periksa : 2510 – 2910 = -410 1’s Complement - + No overflow

Binary 2’s complement for subtraction the 2’s complement is 1’s complement and then add 1. The 2’s complement of 10110 is 01001+1= 01010 To subtract using 2’s complement idem 1’s complement Contoh. 1. 10112 – 1002 = Jawab. 1011 1011 - 0100 + 1100 overflow 10111 + 111 Jadi 10112 – 1002 = + 1112

Lanjutan ….. 2. 100102 – 110002 = ……….. 2 Jawab. 10010 10010 - 11000 + 01000 11010 101 + 1 110 Jadi 100102 – 11002 = - 1102 2’s comp No overflow

b. Operasi adder/subtracter bilangan signed 2’sc Jawaban adder/subtracter diindikasikan oleh bit sign, jika jawaban positif maka bit lainnya merupakan true magnitude dan jika negatif maka bit lainnya merupakan bentuk 2’sc. Contoh ! 1. add untuk bilangan 8 bit 2’sc 01011001 + 10101101 Jawab. 01011001 (+89) + 10101101 (-83) 1 00000110 (+ 6) Jadi true mag = +6 Ignore overflow Sign +

3. Subtract bilangan 8 bit signed 2’sc 01011011 11100101 (+91) (-27) 2. Add 11011001 + 10101101 Jawab. 1011001 (- 39) + 10101101 (- 83) 1 10000110 (-122) jadi true mag 10000110 1111010(-122) 3. Subtract bilangan 8 bit signed 2’sc 01011011 11100101 (+91) (-27) Ignore overflow Sign - 2’sc

Jawab. 01011011 01011011 - 11100101 + 00011011 01110110 jadi true mag 01110110 (+118) 4. Subtract 10001010 11111100 Jawab. 10001010 10001010 - 11111100 + 00000100 10001110 jadi true mag 10001110 01110010(-114) No overflow Sign bit + 2’sc Sign bit -

2. Rubah 10010011 kedalam bilangan decimal menggunakan sistem signed 2’sc. Jawab. 1 0010011 Sign bit 64 32 16 8 4 2 1 = 64+32+8+4+1 1 1 0 1 1 0 1 = 99 true magnitude Jadi true magnitude = -99

3. Tunjukkan -7810 sebagai bilangan 8 bit signed 2’sc. Jawab. 7810 = 0 1 0 0 1 1 1 0 128 64 32 16 8 4 2 1 true magnitude 01001110 2’sc 10110010 jadi -7810 = 10110010 (signed 2’sc).

B. BINARY CODE Pada Binary Code Decimal ( BCD ) setiap digit decimal direpresentasikan dengan empat bit biner. Contoh 2-2 Konversi bilangan decimal ke BCD 390610 = ….. BCD Jawab : 3 9 0 6 11 1001 0000 0110 396010 = 11100100000110 BCD

Lanjutan ….. 2. 543710 = ….. BCD Jawab : 5 4 3 7 0101 0100 0011 0111 543710 = 0101010000110111 BCD Tabel 2-4. Binary codes for the decimal digits. Hal 18 M. Mamno.2.

C. OTHER DECIMAL CODES 1. BCD, 2421, EXCESS–3(XS-3), 84-2-1 2. Gray Codes 3. ASCII character code D. ERROR DETECTING CODE Untuk mendeteksi error pada komunikasi dan prosessing data indikasi deteksi error untuk setiap karakter informasi / ASCII ditambah 1 bit parity (even, add) Contoh. ASCII A = 1000001 01000001 11000001 T = 1010100 11010100 01010100 Even parity odd parity

 E. BINARY STORAGE AND REGISTER Bilangan signed 2’s complement indikasi bilangan decimal diletakkan pada Most Significant Bit atau MSB dan bit sisanya sebagai true magnitude. Untuk sign bit 0 true magnitude positif 1 true magnitude negatif Contoh ! 1. Rubah 00101101 kedalam bilangan decimal menggunakan sistem signed 2’s C. 0 0 1 01101 0432168421 32 + 8 + 4 +1 = 45 Jadi true magnitude adalah +45 Sign bit 

Soal latihan ! 1. Tunjukkan bilangan decimal 8 bit signed 2’sc untuk : a. -50 c. -120 b. +43 d. +83 2. Add bilangan 8 bit signed 2’sc a. 00011110 + 00111000 b. 00110011 + 11001100 3. Subtract bilangan 8 bit signed 2’sc a. 00111001 – 11000110 b. 10101010 - 10011010