Bilangan desimal Bilangan biner Bilangan oktal Bilangan heksadessimal

Slides:



Advertisements
Presentasi serupa
12 PRINSIP DASAR UPI YPTK PADANG
Advertisements

SISTEM BILANGAN Ada bermacam-macam sistem bilangan, diantaranya :
SISTEM BILANGAN, OPERASI ARITMATIKA DAN PENGKODEAN
Sistem Bilangan KEMENTERIAN PENDIDIKAN NASIONAL Oleh : RIZA ALFITA, S.T., M.T
Sistem Pengolahan Data Komputer
Sistem Bilangan.
Bilangan Biner Pecahan dan Operasi Aritmatika
KONVERSI SISTEM BILANGAN
By : Masimbangan Susana Herawati
Sistem bilangan yang sering digunakan :
Sistem Bilangan dan Konversi Bilangan
BAHASA RAKITAN Kenapa harus mempelajari bahasa rakitan :
Chayadi Oktomy Noto Susanto, S.T, M.Eng. 2 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Melakukan proses konversi untuk.
Renni Angreni, M.Kom. Pertemuan 7. Representasi Data dan Sistem Bilangan Pada dasarnya, komputer baru bisa bekerja kalau ada aliran listrik yang mengalir.
Sistem Digital MOH. FURQON Program Studi Teknik Informatika
1 SISTEM BILANGAN. 2 Sistem Bilangan (Number System)  Suatu cara untuk mewakili besaran dari suatu item phisik.
Lanjutan Sistem Bilangan
Sistem Bilangan dan Kode Dosen : Safarindra T. S. Updated : 12/11/2009.
KONVERSI SISTEM BILANGAN
SISTEM BILANGAN Sistem bilangan yang biasa digunakan pada piranti digital adalah sistem-sistem bilangan biner, desimal, dan heksa-desimal. Sistem desimal.
Elka Digital 1 (TKE 0225)- Dodi S.MT Kontrak Kuliah Penilaian: Tugas +Abs : 20% Quiz: 20% UTS: 30% UAS: 30% Penilaian: Tugas +Abs : 20% Quiz: 20% UTS:
1 Pertemuan 2 Sistem Bilangan Matakuliah: T0483 / Bahasa Rakitan Tahun: 2005 Versi: versi 1.0 / revisi 1.0.
MK SISTEM DIGITAL SESI II SISTEM BILANGAN
SISTEM DIGITAL PENDAHULUAN Minggu 1.
Operasi dalam sistem bilangan
SISTEM BILANGAN DAN PENGKONVERSIAN
SISTEM DIGITAL Wisnu Adi Prasetyanto.
Pengantar Teknologi Informasi
PERTEMUAN I (Sesi 2) SISTEM BILANGAN.
Sistem Bilangan dan Kode
Sistem Bilangan dan Konversi Bilangan
Pengantar Teknologi Informasi
Pengantar Teknologi Informasi (Teori)
KONVERSI SISTEM BILANGAN
Pendahuluan Ada beberapa sistem bilangan yang digunakan dalam sistem digital. Yang paling umum adalah sistem bilangan desimal, biner, oktal dan heksadesimal.
TEKNIK DIGITAL BAB II Sistem Bilangan dan Sistem Kode Oleh : M
Studi kasus Konversi Bilangan
KONVERSI SISTEM BILANGAN
Sistem bilangan Dedeng Hirawan, M.Kom..
SISTEM BILANGAN Sistem bilangan yang sering digunakan : Binary (biner)
Representasi Data.
SISTEM DIGITAL PENDAHULUAN.
SISTEM BILANGAN.
PENGANTAR TEKNOLOGI INFORMASI Konversi Bilangan
Purwono Hendradi, M.Kom Februari 2014
Sistem Bilangan Dwi Sudarno Putra
PERTEMUAN KE – 3 SISTEM BILANGAN.
SISTEM BILANGAN.
SISTEM BILANGAN DAN KODE
Pengantar Teknologi Informasi
Mata Kuliah Teknik Digital
MENJELASKAN SISTEM BILANGAN
Sistem Bilangan Temu 2.
M Zakaria Al Ansori Alifian Maulidzi Bayu Kris
JAWABAN PRE TEST 1. Konversikan bilangan biner ke bilangan oktal Jawab : jadi = Konversikan.
Sistem Bilangan Hendra Putra, S.Kom.
Konversi Bilangan Temu 3.
Sistem Bilangan.
SISTEM DIGITAL PENDAHULUAN Novita Wulandari, S.Pd, M.Pd.
SISTEM BILANGAN.
Sistem Bilangan dan Konversi Bilangan
Sistem Bilangan dan Konversi Bilangan
Sistem Bilangan & Konversi Bilangan (KK. MDDTD)
Pengantar Ilmu Komputer
Sistem Bilangan Temu 2.
Operasi Aritmatika Lanjutan
KONVERSI SISTEM BILANGAN
Konversi Bilangan Lanjutan
SISTEM BILANGAN. SOAL ESSAY SISTEM KOMPUTER 1.SEBUTKAN ELEMEN-ELEMEN DARI SISTEM KOMPUTER! 2.JELASKAN DEFINISI SISTEM BILANGAN! 3.SEBUTKAN JENIS-JENIS.
Operasi Aritmatika Temu 5.
Transcript presentasi:

Bilangan desimal Bilangan biner Bilangan oktal Bilangan heksadessimal SISTEM BILANGAN Bilangan desimal Bilangan biner Bilangan oktal Bilangan heksadessimal

Bilangan desimal Adalah bilangan basis 2 yaitu 0 dan 1 2. Bilangan biner Adalah bilangan basis 10 yaitu 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 3. Bilangan oktal Adalah bilangan basis 8 yaitu 0, 1, 2, 3, 4, 5, 6, 7 4. Bilangan heksadesimal Adalah bilangan basis 16 yaitu 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E , F

Tabel dibawah akan menunjukkan ekivalensi antara bilangan heksadesimal, biner dan desimal. 1 2 3 4 5 6 7 8 9 A B C D E F 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 10 11 12 13 14 15

Konversi Bilangan 1. desimal  biner 2. biner desimal Example : Example : ubah 9 menjadi bilangan biner ubah 1001 menjadi desimal Hasilnya adalah 1001 Hasilnya adalah 9

3.desimaloktal 4. oktal desimal Example : Example : Ubah 529 menjadi bil desimal ubah 1021 menjadi bil oktal Hasilnya adalah 1021 Hasilnya adalah 529

5.desimalheksadesimal 6. Heksadesimaldesimal Eksample : Example : Ubah 2479 menjadi bil heksadesimal ubah bilangan 9AF menjadi desimal Hasilnya adalah 9AF hasilnya adalah 2479

7. oktal biner 8. biner oktal Example : Eksample : Ubah 3527 menjadi bil biner ubah 011110011001 ke oktal Hasilnya adalah hasilnya adalah 3631 011101010111

9. heksadesimalbiner 10.binerheksadesimal Example : example : Ubah 2AC menjadi bil biner ubah 010011110101 ke heksadesimal Hasilnya adalah 001010101100 hasilnya adalah 4F5