PERTEMUAN 7 TURUNAN FUNGSI
Kecepatan Sesaat dan Gradien Garis Singgung Misalkan sebuah benda bergerak sepanjang garis lurus menurut persamaan x = x(t), dengan x menyatakan posisi benda tersebut dan t menyatakan waktu. Kecepatan rata-ratanya dari t = a s/d t = b adalah v[a,b] = [x(b) – x(a)]/(b – a). Kecepatan sesaat pada t = a adalah
Misalkan kita mempunyaifungsi y = f(x) yang grafiknya cukup mulus, khususnya di sekitar x = a, sehingga mempunyai garis singgung di a (lihat gambar) Gradien garis lurus yang melalui titik P(a,f(a)) dan Q(b,f(b)) adalah [f(b) – f(a)]/(b – a). Gradien garis singgung pada grafik y = f(x) di P(a,f(a)) adalah
Apa yang dapat direnungkan dari dua masalah tadi kecepatan sesaat dan gradien garis singgung ternyata merupakan bentuk limit yang sama. Bentuk limit ini juga muncul dalam persoalan lainnya (lihat Soal 3.1 no. 19)
DEFENISI TURUNAN FUNGSI Turunan fungsi f adalah fungsi f’ (dibaca f aksen), yang nilainya pada sembarang bilangan c adalah: Asalkan limitnya ada PROSES MENCARI TURUNAN Langsung dari definisi dengan mengganti sembarang bilangan c dengan x, sehingga didapat: Asalkan limitnya ada. Notasi turunan fungsi sering kita memakai huruf D, misalnya Df=f’ atau Df(x)=f’(x)
Contoh-contoh Carilah turunan fungsi dari f(x)=7x-3 Jawab: Jadi f’ dari fungsi yang diberikan adalah f’(x)=7 2. Carilah turunan dari Jawab:
Teorema-teorema Turunan Teorema A (Aturan konstanta) Jika f(x)=k dengan k suatu konstanta maka untuk sembarang x, f’(x)=0 - yakni: D(k)=0 Teorema B (Aturan fungsi identitas) Jika f(x)=x, maka f’(x)=1 - yakni: D(x)=1 Teorema C (Aturan pangkat) Jika untuk n anggota bilangan Rel, maka - yakni :
SAMBUNGAN-1 Teorema D (Aturan Kelipatan) Jika k suatu konstanta dan f fungsi yang terdefrensialkan, maka (kf)’x=kf’(x) -yakni: Teorema E (Aturan Jumlah) Jika k suatu konstanta dan f fungsi yang terdefrensialkan, maka (f+g)’x=f’(x)+g’(x) -yakni: Teorema F (Aturan Selisih) Jika k suatu konstanta dan f fungsi yang terdefrensialkan, maka (f-g)’x=f’(x)-g’(x) -yakni:
SAMBUNGAN 2 Teorema G (Aturan Perkalian) Andaikan f dan g fungsi-fungsi yang dapat dideferensialkan,maka(f.g)’(x)=f(x)g’(x)+g(x)f’(x) -yakni: Teorema H (Aturan Pembagian) Andaikan f dan g fungsi-fungsi yang dapat dideferensialkan dengan , maka -yakni:
Bukti Teorema Bukti Teorema C (Aturan pangkat), yaitu , maka Bukti: Contoh Soal; Carilah Dy dari:
Pemecahan soal-soal
2. Cari persamaan garis singgung pada grafik y = 3 sin 2x di titik ? Jawab. Kita memerlukan turunan dari sin 2x yaitu: Pada maka turunannya bernilai 6, ini merupakan kemiringan garis singgung. Jadi persamaan garis singgung itu adalah:
NOTASI LEIBNIZ TURUNAN TINGKAT TINGGI TURUNAN IMPLISIT PERTEMUAN 9 NOTASI LEIBNIZ TURUNAN TINGKAT TINGGI TURUNAN IMPLISIT
Notasi Leibniz Pada gambar di bawah, tampak bahwa pertambahan sebesar ∆x pada x menyebabkan pertambahan sebesar ∆y pada y, dengan
∆y = f(x + ∆x) – f(x). Bagi kedua ruas dengan ∆x,kita peroleh Jika ∆x → 0, maka G. Leibniz menggunakan lambang dy/dx untuk menyatakannya
Contoh Jika y = x3 + x, maka dy/dx = 3x2 + 1. Dengan notasi Leibniz, Aturan Rantai berbunyi: Jika y = f(u) dan u = g(x), maka
Turunan Tingkat Tinggi Diberikan sebuah fungsi f, kita turunkan f ’, yang juga merupakan fungsi. Dari f ’ dapat kita turunkan f ’’ = (f ’)’, yang disebut turunan kedua f , dan dari f ’’ kita dapat memperoleh turunan ketiga f , yakni f ’’’ = (f ’’)’, dst. Turunan ke-n dari y = f(x) dilambangkan dengan f (n) atau dny/dxn. Contoh Jika y = sin 2x, maka dy/dx = 2 cos 2x, d2y/dx2 = -4 sin 2x, d3y/dx3 = -8 cos 2x, dst.
Bila turunan pertama mempunyai interpretasi fisis kecepatan sesaat, maka turunan kedua secara fisis dapat diinterpretasikan sebagai percepatan (sesaat) yang mengukur laju perubahan kecepatan terhadap waktu (lihat Purcell hal. 151-155). Untuk memahami lebih jauh tentang interpretasi dari turunan, khususnya turunan pertama, kedua, dan ketiga, baca Purcell hal. 155 tentang model matematika dan kerjakan Soal 3.7 no. 39
Turunan Implisit Penurunan Implisit Misalkan kita mempunyai persamaan 7y3 + y = x3 dan ingin menentukan persamaan garis singgung pada grafik persamaan tersebut di (2,1). Masalahnya adalah bagaimana menghitung dy/dx, padahal kita tidak mempunyai rumus eksplisit untuk y dalam x.
Secara implisit, kita dapat menurunkan kedua ruas terhadap x dengan menggunakan Aturan Rantai (dengan mengingat bahwa y adalah fungsi dari x): 21y2.dy/dx + dy/dx = 3x2
Kerja Kelompok Di Kelas Buat contoh persamaan engan notasi Leibniz, turunan tingkat tinggi dan turunan implisit Presentasikan sesuai urutan kelompok Siapkan Pertanyaan untuk kelompok lainnya Kerjakan Beberapa soal yang berkaitan
DIFERENSIASI TURUNAN FUNGSI PARAMETER TURUNAN FUNGSI TRIGONOMETRI PERETMUAN 10 DIFERENSIASI TURUNAN FUNGSI PARAMETER TURUNAN FUNGSI TRIGONOMETRI
ATURAN DIFFERENSIAL SAMA DENGAN ATURAN DERIVATIFISASI Turunan Differensial
Fungsi Parameter
FUNGSI PARAMETER Sebuah fungsi yangdinyatakan oleh parameter lain Contoh 1. Persamaan lingkaran Dalam bentuk fugnsi parameter dinyatakan sebagai 2. 3 t ≥
Tentukan turunan dari y terhadap x dari fungsi parameter: 1. 2. 3 4 t 0 0 ≤ t ≤ 2 π
Fungsi Trigonomeri
Teorema 1: atau Teorema 2: Teorema 3a: Teorema 3b: Teorema 4: dan
Contoh-contoh 1. 2. 3. 4
Soal-soal 1. 5. 2. 6. 3. 7. 4.
Soal-soal 8. 12. 9. 13. 10. 14. 11.
15 23 16 24 17 25 18 26 19 27 20 28 21 22