Materi 5 Metode Secant.

Slides:



Advertisements
Presentasi serupa
Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi,
Advertisements

PERSAMAAN NON LINEAR.
PERSAMAAN NON LINEAR.
AKAR PERSAMAAN NON LINEAR
akar persamaan Non Linier
SOLUSI PERSAMAAN NIRLANJAR RUMUSAN MASALAH, METODE PENCARIAN AKAR,METODE TERTUTUP, DAN METODE TERBUKA DISUSUN OLEH : DEVI WINDA MARANTIKA ( )
Persamaan Non Linier Supriyanto, M.Si..
Metode Numerik Persamaan Non Linier.
AKAR PERSAMAAN NON LINEAR
Solusi Persamaan Nirlanjar (Bagian 2)
ALGORITMA MATEMATIKA.
4. SOLUSI PERSAMAAN NON-LINIER.
4. SOLUSI PERSAMAAN NON-LINIER.
By Eni Sumarminingsih, SSi, MM
5. SOLUSI PERSAMAAN NON-LINIER.
SOLUSI PERSAMAAN NON LINEAR
HAMPIRAN NUMERIK SOLUSI PERSAMAAN POLINOMIAL Pertemuan 4
X’2 xo x’1 y=f(x) f(x) x xo = solusi eksak x’1, x’2 = solusi pendekatan Solusi pendekatan yang baik: Cukup dekat dengan xo, yaitu | x’-xo|0 Nilai mutlak.
BAB II : PENYELESAIAN AKAR-AKAR PERSAMAAN
Persamaan Non Linier (lanjutan 02)
PERSAMAAN non linier 3.
Optimasi Dengan Metode Newton Rhapson
Metode NEWTON-RAPHSON CREATED BY : NURAFIFAH
METODE NUMERIK AKAR-AKAR PERSAMAAN.
Persamaan Non Linier (Lanjutan 1)
Metode numerik secara umum
Metode Numerik untuk Pencarian Akar
METODE TERBUKA: Metode Newton Raphson Metode Secant
PERSAMAAN NON –LINIER Pengantar dan permasalahan persamaan Non-Linier
METODE NUMERIK AKAR-AKAR PERSAMAAN.
Pertemuan ke – 4 Non-Linier Equation.
AKAR PERSAMAAN Metode Pengurung.
Akar Persamaan f(x)=0 Metode AITKEN
Metode Terbuka.
X’2 xo x’1 y=f(x) f(x) x xo = solusi eksak x’1, x’2 = solusi pendekatan Solusi pendekatan yang baik: Cukup dekat dengan xo, yaitu | x’-xo|0 Nilai mutlak.
Akar-akar Persamaan Non Linier
Metode Terbuka Metode Iterasi Titik Tetap, Newton-Rapson, Secant, Kasus Khusus.
Metode Numerik Oleh: Swasti Maharani.
METODE NUMERIK AKAR-AKAR PERSAMAAN.
PERSAMAAN NON –LINIER Pengantar dan permasalahan persamaan Non-Linier
SOLUSI PERSAMAAN NON LINEAR
AKAR PERSAMAAN NON LINEAR
Metode Newton-Raphson
Metode Numerik untuk Pencarian Akar
Teknik Komputasi Persamaan Non Linier Taufal hidayat MT.
Sistem Persamaan non Linier
Materi I Choirudin, M.Pd PERSAMAAN NON LINIER.
Akar Persamaan Tak Linier
Persamaan Linier Metode Regula Falsi
Regula Falsi.
Metode Newton-Raphson
Daud Bramastasurya H1C METODE NUMERIK.
AKAR-AKAR PERSAMAAN Matematika-2.
SISTEM PERSAMAAN NIRLANJAR (NONLINIER)
Materi II Persamaan Non Linier METODE BISEKSI Choirudin, M.Pd
Metode Newton-Raphson Choirudin, M.Pd
Universitas Abulyatama-2017
MATA KULIAH METODE NUMERIK NOVRI FATMOHERI
PERSAMAAN NON –LINIER Pengantar dan permasalahan persamaan Non-Linier
PRAKTIKUM II METODE NUMERIK
Damar Prasetyo Metode Numerik I
Metode Terbuka Metode Iterasi Titik Tetap, Newton-Rapson, Secant, Kasus Khusus.
AKAR-AKAR PERSAMAAN Muhammad Fitrullah, ST
Bab 2 AKAR – AKAR PERSAMAAN
AKAR-AKAR PERSAMAAN Matematika-2.
Gunawan.ST.,MT - STMIK_BPN
Gunawan.ST.,MT - STMIK-BPN
Persamaan non Linier Indriati., ST., MKom.
Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi
Kelebihan Metode Secant terhadap Newton-Rapshon
Transcript presentasi:

Materi 5 Metode Secant

Metode Secant Metode Newton Raphson memerlukan perhitungan turunan fungsi f’(x). Tidak semua fungsi mudah dicari turunannya terutama fungsi yang bentuknya rumit. Turunan fungsi dapat dihilangkan dengan cara menggantinya dengan bentuk lain yang ekivalen Modifikasi metode Newton Raphson dinamakan metode Secant.

Metode Newton-Raphson

Algoritma Metode Secant Definisikan fungsi F(x) Definisikan torelansi error (e) dan iterasi maksimum (n) Masukkan dua nilai pendekatan awal yang di antaranya terdapat akar yaitu x0 dan x1, sebaiknya gunakan metode tabel atau grafis untuk menjamin titik pendakatannya adalah titik pendekatan yang konvergensinya pada akar persamaan yang diharapkan. Hitung F(x0) dan F(x1) sebagai y0 dan y1 Untuk iterasi I = 1 s/d n atau |F(xi)| hitung yi+1 = F(xi+1) Akar persamaan adalah nilai x yang terakhir.

Contoh Soal Penyelesaian dari x2 –(x + 1) e-x = 0

Contoh Soal Penyelesaian x2 –(x + 1) e-x = 0, Ambil x0 = 0,8 dan x1 = 0,9 maka dapat dihitung y0 = -0,16879 dan y1 = 0,037518 Itersi Metode Secant adalah sebagai berikut: Iterasi 1 = = 0,881815 dan y2 = 0,00153 Iterasi 2 = = 0,882528 dan y3 = -0,000013 Iterasi 3 = = 0,882534 dan y4 = 0,000000

Contoh Soal Maka akarnya adalah x = 0,882534 N x y 0,800000 -0,168792 0,800000 -0,168792 1 0,900000 0,037518 2 0,881815 -0,001532 3 0,882528 -0,000013 4 0,882534 0,000000 Maka akarnya adalah x = 0,882534

Latihan Hitunglah akar f(x) = ex – 5x2 dengan metode Secant. Gunakan ε = 0,000001 dengan x0 = 1 x1 = 2 x6 – x – 1 = 0 x0 = 1, x1 = 2 dan galat = 0,000001

TERIMA KASIH & SELAMAT BELAJAR....