MODUL 9 Y REGRESI (1) Y = a + bx, a >0, b>0 MODEL, SYARAT DAN PENGERTIAN Perencanaan merupakan salah satu bagian penting dalam setiap kegiatan termasuk kegiatan ekonomi. Perencanaan umumnya didasarkan pada asumsi- asumsi kejadian di masa mendatang. Salah satu alat untuk meramalkan kejadian di masa mendatang adalah persamaan regresi yaitu persamaan matematik yang memungkinkan peramalan nilai-nilai suatu peubah tak bebas dari nilai-nilai satu atau lebih peubah tak bebas. Istilah ini berasal dari Sir Francis Galton (1822-1911), seorang antropolog dan ahli meteorologi terkenal dari Inggris, yang membandingkan tinggi badan anak laki-laki dengan tinggi badan ayahnya di mana dia menemukan bahwa setelah beberapa generasi, tinggi badan anak laki-laki dari ayah yang tinggi cenderung menurun (regressed) menuju titik tengah populasi. Persamaan regresi dapat ditemukan setelah terdapat sejumlah pasangan data historis yang membentuk pola. Beberapa pola hubungan antara peubah X dan Y disajikan pada Gambar 1. Y dikatakan sebagai peubah terikat (dependent variable) dan X sebagai peubah bebas (independent variable). Pola-pola tersebut dapat dinyatakan dalam bentuk hubungan matematis seperti disajikan di bagian bawah setiap gambar. Persamaan matematis inilah yang dapat digunakan untuk meramalkan nilai Y dari suatu nilai X. Berdasarkan pola yang disajikan pada Gambar 1. terlihat bahwa hubungan antara X dan Y tidak selalu berupa garis lurus (linier) tetapi dapat berupa parabola, hiperbola, geometrik atau logaritmik. Nilai Y juga bisa tergantung pada lebih dari satu nilai X yang disebut dengan regresi berganda. Pada kuliah ini, penekanan akan lebih terarah kepada regresi linier. Y (1) Y = a + bx, a >0, b>0 Y X (2) Y= a+b1x+b2x2, a>0, b2>0 X PUSAT PENGEMBANGAN BAHAN AJAR-UMB http://www.mercubuana.ac.id Sarwati Rahayu, ST. MMSI. STATISTIK DAN PROBABILITAS 1
Hal itu menunjukkan adanya keragaman nilai Y. Persamaan regresi hanya 20 50 40 25 420 560 525 480 510 Hal itu menunjukkan adanya keragaman nilai Y. Persamaan regresi hanya menghasilkan satu nilai Y sehingga salah satu kriteria keberhasilan persamaan regresi adalah kemampuannya mewakili keragaman nilai Y. Di samping itu, karena dari pasangan data tersebut dapat dihasilkan sejumlah persamaan dengan nilai konstanta a dan b yang berbeda, maka terdapat selang kepercayaan untuk nilai dan yang benar. Nilai dan ini pada persamaan regresi diduga menggunakan nilai a dan b di mana a adalah intersep yaitu titik perpotongan garis regresi dengan sumbu Y bila X = 0 dan b adalah kemiringan garis (gradien/slope) yang disebut juga dengan koefisien regresi. Beberapa metode dapat digunakan untuk membentuk persamaan regresi seperti metode free hand, kuadrat terkecil (least squares) dan maximum likelihood. Metode yang paling banyak digunakan dan dibahas dalam modul ini adalah metode kuadrat terkecil. Metode ini pertama kali diperkenalkan oleh Carl Friedrich Gauss, seorang ahli matematika berkebangsaan Jerman lulusan Georg-August Universität, Göttingen. Prinsip dari metode ini yaitu meminimumkan jumlah nilai kuadrat error N e i1 ( 2 ), i di mana error didefinisikan sebagai: ei Yi Yˆi yaitu perbedaan antara nilai Y asli dengan Y dugaan dari garis regresi. Agar lebih mudah dipahami, error diilustarasikan pada Gambar 2 berdasarkan data pada Tabel 1. PUSAT PENGEMBANGAN BAHAN AJAR-UMB http://www.mercubuana.ac.id Sarwati Rahayu, ST. MMSI. STATISTIK DAN PROBABILITAS 3
2 n 1 n n 1 n n t / 2 s e t / 2 s e y x x n n (5) Cari standar error untuk Y s e dengan rumus: n n n xi xi n y i y i n 1 n 2 s e 2 (s y b 2 s x ); s x 2 2 2 dan s y Standar error merupakan penduga tak bias bagi ragam (2) Y dengan derajat bebas sebesar n – 2, di mana n adalah jumlah data. Faktor pengurang 2 karena data tersebut telah digunakan untuk menduga a dan b. Berdasarkan data contoh diperoleh: 12(15650) 168100 12(11) s x 2 149,2424 12( 2512925) 29648025 12(11) s y 2 3841,477 ; di mana: y n i1 n 2 2 2512925 ; yi =29648025 i i1 sehingga: n 1 n 2 11 10 s e 2 (s y b 2 s x ) 2 2 (3841,477 (3,220812 2 x149,2424)) 2522.621 (6) Cari selang kepercaayaan untuk dan menggunakan rumus: Selang kepercayaan (1-) 100% (di mana di sini adalah taraf nyata) bagi parameter (intersep garis regresi) adalah: n t / 2 s e i1 s x n(n 1) x n t / 2 s e i i1 s x n(n 1) 2 x 2 i a a dan selang kepercayaan (1-) 100% (di mana di sini adalah taraf nyata) bagi parameter adalah: b t / 2 s e s x n1 b t / 2 s e s x n1 Berdasarkan contoh: Selang kepercayaan 95% (=5%) bagi adalah: 2,228 2522.621 15650 149,2424 12(11) 2,228 2522.621 15650 149,2424 12(11) 343.7 343.7 243,97 443,44 PUSAT PENGEMBANGAN BAHAN AJAR-UMB http://www.mercubuana.ac.id Sarwati Rahayu, ST. MMSI. STATISTIK DAN PROBABILITAS 5