Bilqis1 Pertemuan 7 2009. bilqis2 Sequences and Summations Deret (urutan) dan Penjumlahan.

Slides:



Advertisements
Presentasi serupa
Pengujian Hipotesis untuk Satu dan Dua Varians Populasi
Advertisements

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT. © 2006 Microsoft Corporation. All.
Algoritma & Pemrograman #10
Mata Kuliah : ALGORITMA dan STRUKTUR DATA 1.
PEMOGRAMAN BERBASIS JARINGAN
ESTIMASI PENJUALAN DATA TIME SERIES - DEKOMPOSISI 1. ADDITIVE MODEL 2. MULTIPLICATIVE MODEL.
Program Keahlian I – SI By Antonius Rachmat C, S.Kom
Peta Kontrol (Untuk Data Variabel)
Bilqis1 Pertemuan bilqis2 Himpunan bilqis3 Definisi: himpunan (set) adalah kumpulan obyek-obyek tidak urut (unordered) Obyek dalam himpunan disebut.
1 Pertemuan 21 Pompa Matakuliah: S0634/Hidrologi dan Sumber Daya Air Tahun: 2006 Versi: >
Process to Process Delivery
Pertemuan 4 Teori Dualitas bilqis.
Chapter Nine The Conditional.
ESTIMATION AND ROONDING OF NUMBERS
PERULANGANPERULANGAN. 2 Flow of Control Flow of Control refers to the order that the computer processes the statements in a program. –Sequentially; baris.
Slide 3-1 Elmasri and Navathe, Fundamentals of Database Systems, Fourth Edition Revised by IB & SAM, Fasilkom UI, 2005 Exercises Apa saja komponen utama.
Prof. Busch - LSU1 Mathematical Preliminaries. Prof. Busch - LSU2 Mathematical Preliminaries Sets Functions Relations Graphs Proof Techniques.
Introduction to The Design & Analysis of Algorithms
Operational Research Linear Programming With Simplex Method
PROSES PADA WINDOWS Pratikum SO. Introduksi Proses 1.Program yang sedang dalam keadaan dieksekusi. 2.Unit kerja terkecil yang secara individu memiliki.
1. Objek dalam kalimat aktif menjadi subjek dalam kalimat pasif
Review Operasi Matriks
Applications of Matrix and Linear Transformation in Geometric and Computational Problems by Algebra Research Group Dept. of Mathematics Course 2.
DEPARTEMEN ILMU KOMPUTER FMIPA IPB 2011 Praktikum Bahasa Pemrograman.
Functions (Fungsi) Segaf, SE.MSc. Definition “suatu hubungan dimana setiap elemen dari wilayah saling berhubungan dengan satu dan hanya satu elemen dari.
Pertemuan 4 Vektor 2 dan 3 Dimensi bilqis.
Bilqis1 Pertemuan bilqis2 The Basics of Counting.
Pertemuan 3 Determinan bilqis.
Bilqis1 Pertemuan 2. bilqis2 TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan : – Mengetahui definisi Matriks – Dapat.
Pertemuan bilqis.
PERTEMUAN 1 bilqis.
Pertemuan 8 Transformasi Linier 4.2 bilqis.
Pertemuan 3 Metnum 2011 Bilqis. bilqis2 Berbedaan Akolade dan Terbuka M. Akolade  –Konvergen  krn penerapan metoda berulang kali akan mendekati akar.
Pertemuan 7 Metnum 2011 Bilqis
Pertemuan 6 Metnum 2011 Bilqis
Risk Management.
Implementing an REA Model in a Relational Database
Pertemuan 3 Menghitung: Nilai rata-rata (mean) Modus Median
MEMORY Bhakti Yudho Suprapto,MT. berfungsi untuk memuat program dan juga sebagai tempat untuk menampung hasil proses bersifat volatile yang berarti bahwa.
SUBPROGRAM IN PASCAL Function.
Basisdata Pertanian. After completing this lesson, you should be able to do the following Identify the available group functions Describe the use of group.
Array.
Array
2nd MEETING Assignment 4A “Exploring Grids” Assignment 4 B “Redesign Grids” Create several alternatives grid sysytem using the provided elements: (min.
Slide 1 QUIS Langkah pertama caranya Buat di slide pertama judul Slide kedua soal Slide ketiga waktu habis Slide keempat jawaban yang benar Slide kelima.
LESSON 10: LET’S COOK LEARNING FOCUS USING “a little” USING “a few”
LIMIT FUNGSI LIMIT FUNGSI ALJABAR.
Bilqis1 Pertemuan 2. bilqis2 TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan : – Mengetahui definisi Matriks – Dapat.
PEMROGRAMAN PPBD (UAS) SEBELUM MELANGKAH KE TAHAP SELANJUTNYA BERDOA DULU BIAR LANCAR DAN GA EROR
Linked List dan Double Linked List
Amortization & Depresiasi
BASH – Shell Programming Guide Erick, Joan © Sekolah Tinggi Teknik Surabaya 1.
Contentment Philippians 4: Contentment What does it mean to be content? What does it mean to be content? Are you a content person? Are you a content.
SMPN 2 DEMAK GRADE 7 SEMESTER 2
Operator dan Assignment Pertemuan 3 Pemrograman Berbasis Obyek Oleh Tita Karlita.
THE EFFICIENT MARKETS HYPOTHESIS AND CAPITAL ASSET PRICING MODEL
1. 2 Work is defined to be the product of the magnitude of the displacement times the component of the force parallel to the displacement W = F ║ d F.
Lecture 8 Set and Dictionary Sandy Ardianto & Erick Pranata © Sekolah Tinggi Teknik Surabaya 1.
MAINTENANCE AND REPAIR OF RADIO RECEIVER Competency : Repairing of Radio Receiver.
PERSAMAAN DAN PERTIDAKSAMAAN
Romans 1: Romans 1:16-17 New Living Translation (NLT) 16 For I am not ashamed of this Good News about Christ. It is the power of God at work, saving.
PENJUMLAHAN GAYA TUJUAN PEMBELAJARAN:
TCP, THREE-WAY HANDSHAKE, WINDOW
Menu Standard Competence Based Competence.
Retrosintetik dan Strategi Sintesis
Web Teknologi I (MKB511C) Minggu 12 Page 1 MINGGU 12 Web Teknologi I (MKB511C) Pokok Bahasan: – Text processing perl-compatible regular expression/PCRE.
Made by: Febri, Andrew, Erina, Leon, Luvin, Jordy
Pola Bilangan Barisan & Deret GO Oleh: Hananto Wibowo, S. Pd. Si.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
07/11/2017 BARISAN DAN DERET KONSEP BARISAN DAN DERET 1.
Transcript presentasi:

bilqis1 Pertemuan

bilqis2 Sequences and Summations Deret (urutan) dan Penjumlahan

bilqis3 Deret: Adalah sebuah fungsi dari himpunan bagian integer ke suatu himpunan S. Himpunan bagian integer yang dimaksud adalah {0, 1, 2, …} atau {1, 2, 3, …} S = { a 0, a 1, a 2, a 3, …, a n } atau { a 1, a 2, a 3, …, a n } Geometric progression: a, ar, ar 2, ar 3, …, ar n  r = ratio Arithmetic progression: a, a+d, a+2d, …, a+nd  d = different String: a 1 a 2 a 3 … a n empty string =

bilqis4 Sequence Sequence = urutan Sequence : –Struktur diskrit yg digunakan untuk merepresentasikan urutan elemen –Fungsi dari N ke S –A n  image dari integer n Example: subset of N: … S: … f N dimulai dari 1

bilqis5 Sequences We use the notation {a n } to describe a sequence. Important: Do not confuse this with the {} used in set notation. It is convenient to describe a sequence with a formula. For example, the sequence on the previous slide can be specified as {a n }, where a n = 2n.

bilqis6 The Formula Game 1, 3, 5, 7, 9, … a n = 2n , 1, -1, 1, -1, … a n = (-1) n 2, 5, 10, 17, 26, … a n = n , 0.5, 0.75, 1, 1.25 … a n = 0.25n 3, 9, 27, 81, 243, … a n = 3 n What are the formulas that describe the following sequences a 1, a 2, a 3, … ?

bilqis7 Strings Finite sequences are also called strings, denoted by a 1 a 2 a 3 …a n. String  kumpulan sequence –Ex : The length of a string S is the number of terms that it consists of. Length  jumlah elemen pada string The empty string contains no terms at all. It has length zero. Empty string  string yang tidak ada element –Length = 0

bilqis8 Contoh The sequence {bn} dgn bn=(-1) n adalah geometric progression. Kita mulai pada n=0, maka b0, b1, b2, b3 ….adalah 1, -1, 1, -1, ……… The sequence {Sn} dgn Sn = n adalah aritmatic progression. Kita mulai pada n=0, maka S0, S1, S2, S3 ….adalah -1, 3, 7, 11, ……

bilqis9

10

bilqis11

bilqis12

bilqis13 Penjumlahan (summation): a j = a m + a m+1 + a m+2 + … + a n m disebut batas bawah n disebut batas atas j disebut indeks  n j = m

bilqis14 Summations It is = 21. We write it as. What is the value of ? It is so much work to calculate this… What is the value of ? How can we express the sum of the first 1000 terms of the sequence {a n } with a n =n 2 for n = 1, 2, 3, … ?

bilqis15 Summations It is said that Friedrich Gauss came up with the following formula: When you have such a formula, the result of any summation can be calculated much more easily, for example:

bilqis16 Double Summations Corresponding to nested loops in C or Java, there is also double (or triple etc.) summation: Example:

bilqis17 Double Summations Table 2 in Section 3.2 (4 th edition: Section 1.7) contains some very useful formulas for calculating sums. Exercises 15 and 17 make a nice homework.

bilqis18

bilqis19

bilqis20

bilqis21

bilqis22

bilqis23

bilqis24 Definisi Rekursif

bilqis25 Rekursif Rekursif  –perulangan terhadap diri sendiri, dengan ukuran lebih kecil –Ada titik berhenti, apakah pada 0 atau pada 1 –Secara prinsip mirip dengan induksi : Ada nilai awal Ada rumus untuk selanjutnya Ex : 1 hal 203 – misal f didefinisikan sbb : F(0) = 3 F(n+1) = 2 f(n) + 3 Tentukan f(1), f(2), f(3), f(4) Jawab : f(1) = 2f(0) + 3 = 2  = 9 f(2) = 2f(1) + 3 = 2  = 21 f(3) = 2f(2) + 3 = 2  = 45 f(4) = 2f(3) + 3 = 2  = 93

bilqis26 Recursively Defined Functions How can we recursively define the factorial function f(n) = n! ? f(0) = 1 f(n + 1) = (n + 1)f(n) Hitung f(4) Jawab : f(4) = 4f(3) = 4  6 = 24 f(3) = 3f(2) = 3  2 = 6 f(2) = 2f(1) = 2  1 = 2 f(1) = 1f(0) = 1  1 = 1 f(0) = 1

bilqis27 Recursively Defined Functions A famous example: The Fibonacci numbers f(0) = 0, f(1) = 1 f(n) = f(n – 1) + f(n - 2) Hitung f(6) f(6) = f(5) + f(4) = = 8 f(5) = f(4) + f(3) = = 5 f(4) = f(3) + f(2) = = 3 f(3) = f(2) + f(1) = = 2 f(2) = f(1) + f(0) = = 1 f(1) = 1 f(0) = 0

bilqis28 Fungsi rekursif: Fungsi yang dinyatakan dengan “diri sendiri” dalam ukuran yang lebih kecil (secara rekursif), dan nilai eksplisit untuk nilai(-nilai) basis. Contoh: fungsi Fibonacci Basis: fib(0) = 0; fib(1) = 1 Rekursif:fib(n) = fib(n – 1) + fib(n – 2) Ditulis dengan cara lain: n jika n = 0, 1 fib(n) = fib (n – 1) + fib (n – 2) jika n > 1

bilqis29 PR (lihat buku) 3.2  5, 9, 13, 15, 17,  3, 7