BAB 9 OBLIGASI.

Slides:



Advertisements
Presentasi serupa
PENILAIAN OBLIGASI SURIPTO, SE, M.Si.,AK
Advertisements

LIABILITAS JANGKA PANJANG
Surat Obligasi adalah sebuah surat perjanjian
Sekuritas Dilutif dan Laba Per Lembar Saham
INVESTASI JANGKA PANJANG DAN AKTIVA LAIN-LAIN
Soal OBLIGASI Pengantar Akuntansi 2.
Bab 10 Saham Bab 10 Matematika Keuangan Edisi
BAB 4 ANUITAS BIASA.
BAB 12 PERDAGANGAN MARGIN.
Piutang Wesel/ Wesel Tagih (Notes Receivable)
HUTANG DAN MODAL (EKUITAS)
BAB 1 BUNGA SEDERHANA Matematika Keuangan Edisi bab 1.
KELOMPOK 1 BAB 16 DI SUSUN OLEH : HAN FAJRI KAUSAR HAFIZH FAISAL EKA ASRININGRUM AMIROH ILONA MEGA PUTRI DI SUSUN OLEH : HAN FAJRI KAUSAR HAFIZH FAISAL.
NET PRESENT VALUE VS INTERNAL RATE OF RETURN
Surat Berharga Jangka Panjang ( Long term securities)
ANUITAS DI MUKA DAN ANUITAS DITUNDA
UTANG JANGKA PANJANG (OBLIGASI)
INVESTASI JANGKA PANJANG (OBLIGASI)
AMORTISASI UTANG DAN DANA PELUNASAN
BAB 8 “AMORTISASI UTANG DAN DANA PELUNASAN” Matematika Keuangan
INVESTASI JANGKA PANJANG DALAM OBLIGASI
ANUITAS BERTUMBUH DAN ANUITAS VARIABEL
TINGKAT DISKON DAN DISKON TUNAI
OBLIGASI.
SURAT BERHARGA YANG DITERBITKAN
BAB 10 “OBLIGASI” Matematika Keuangan Modifikasi Oleh:
Jenis-jenis Obligasi :
OBLIGASI DAN PENILAIANNYA
Obligasi dan Valuasinya
HUtang dan Kewajiban Lain
Pertemuan 7 AKUNTANSI KEWAJIBAN TIDAK LANCAR BAGIAN 1
“ANUITAS DIMUKA” BAB 6 Matematika Keuangan Oleh:
Akuntansi untuk Hutang
INVESTASI JANGKA PANJANG (1)
Lecture Note: Trisnadi Wijaya, S.E., S.Kom
PENILAIAN SURAT BERHARGA
HUTANG JANGKA PANJANG Hutang jangka panjang adalah kewajiban kepada pihak tertentu yang harus dilunasi dalam jangka waktu lebih dari satu perioda akuntansi.
BAB VIII. PENGERTIAN OBLIGASI
SOAL-SOLUSI: ANALISIS DAN Valuasi Obligasi
B. Metode Bunga Efektif PT Hasta Millenia mengeluarkan obligasi nominal Rpl ,-, umur 5 tahun, bunga 10% per tahun dibayarkan tiap setengah tahun.
UTANG JANGKA PANJANG (OBLIGASI)
Bab 1 Matematika Keuangan Edisi
LIABILITAS JANGKA PANJANG
KEWAJIBAN JANGKA PANJANG
Utang Obligasi dan Investasi pada Obligasi
INVESTASI OBLIGASI Prepared by Dra. Gunasti Hudiwinarsih, M.Si., Ak
HUTANG JANGKA PANJANG : OBLIGASI
TINGKAT DISKON DAN DISKON TUNAI
PENILAIAN SURAT BERHARGA
OBLIGASI dan VALUASINYA
PERTEMUAN MINGGU 1 PENILAIAN SURAT BERHARGA JANGKA PANJANG
PENILAIAN SURAT BERHARGA JANGKA PANJANG
ASSALAMUALAIKUM.
AMORTISASI PREMI DAN DISKONTO
Investasi Dalam Obligasi
Hutang Obligasi Moh. Amin.
ANALISIS INVERSTASI DAN PORTOFOLIO
AKUNTANSI KEUANGAN 3 MATERI
UTANG JANGKA PANJANG (OBLIGASI)
OBLIGASI.
Nilai pasar vs Nilai intrinsik
AKUNTANSI KEUANGAN MENENGAH II
Topik VI Investasi Jangka Panjang
SAHAM DAN OBLIGASI.
Pertemuan 25 ANALISA OBLIGASI
Utang Antarperusahaan
SEKURITAS DILUTIF TIARA WULANDARI, SE, M.AK STIE PEMBANGUNAN TANJUNGPINANG.
SAHAM DAN OBLIGASI.
PERTEMUAN 03 SAHAM DAN DERIVATIF
Kewajiban Jangka Panjang
Transcript presentasi:

BAB 9 OBLIGASI

PENDAHULUAN Terdapat 2 jenis pembiayaan : 1. Pembiayaan tak langsung (indirect financing) Ada perantara yang memperoleh keuntungan, sehingga keuntungan dari pihak pemegang kas surplus berkurang dan pihak kas defisit harus membayar bunga lebih tinggi. Bab 9 Matematika Keuangan Edisi 3 - 2010

2. Pembiayaan langsung (direct financing) Tidak ada perantara, sehingga keuntungan dari pihak pemegang kas surplus lebih besar dan pihak kas defisit membayar bunga lebih rendah. Pihak pemegang kas surplus lebih menyukai menerima bunga 10% daripada 7% dan pihak kas defisit lebih suka membayar 10% daripada 14%. Bab 9 Matematika Keuangan Edisi 3 - 2010

Obligasi merupakan surat utang jangka panjang yang dikeluarkan peminjam (emiten) kepada pemberi pinjaman (investor). Daya tarik obligasi sebagai investasi adalah investor mendapatkan pengembalian yang lebih besar daripada bunga deposito atau tabungan dan sifatnya yang cukup likuid sebagai produk pasar modal (diperdagangkan di BES). Daya tarik obligasi sebagai surat utang adalah tingkat bunga yang dibayarkan emiten/peminjam lebih rendah daripada bunga pinjaman bank. Investor obligasi mengharapkan mendapatkan imbal hasil (disebut yield) atas investasinya. Bab 9 Matematika Keuangan Edisi 3 - 2010

OBLIGASI BERBUNGA (COUPON BOND) Obligasi berbunga merupakan obligasi yang memberikan bunga secara periodik kepada pemegangnya. Obligasi tak berbunga adalah obligasi yang tidak memberikan bunga sama sekali, tetapi hanya pembayaran atau pelunasan sebesar nilai nominal pada saat jatuh tempo. Setiap obligasi berbunga memuat : Nilai nominal  besarnya utang yang akan dilunasi pada saat jatuh tempo. Tanggal jatuh tempo  tanggal pelunasan utang obligasi. Tingkat bunga obligasi atau kupon yang biasanya dinyatakan per tahun (p.a.). Tanggal pembayaran bunga (apakah bunga setahun sekali atau setahun dua kali). Bab 9 Matematika Keuangan Edisi 3 - 2010

PENENTUAN HARGA WAJAR dengan : F = Nilai nominal atau nilai pari obligasi c = Tingkat bunga (kupon) obligasi per periode C = Pembayaran bunga per periode i = Yield per periode n = Jumlah periode P = Harga wajar obligasi Bab 9 Matematika Keuangan Edisi 3 - 2010

Contoh 9.1 Sebuah obligasi bernilai nominal Rp 100.000.000 dengan bunga j2 = 12% jatuh tempo dalam 10 tahun. Tentukan harga wajar obligasi jika investor mengharapkan yield: 14% p.a. 10% p.a. Jawab : Bab 9 Matematika Keuangan Edisi 3 - 2010

Bab 9 Matematika Keuangan Edisi 3 - 2010

OBLIGASI DAPAT DITEBUS (CALLABLE BOND) Callable bond merupakan obligasi yang dapat ditebus sebelum jatuh tempo. Hak penebusan ini digunakan emiten jika tingkat bunga pasar lebih rendah dari pada tingkat bunga obligasi dan tidak digunakan jika tingkat bunga pasar lebih tinggi dari pada tingkat bunga obligasi. Karena callable bond itu menguntungkan emiten dan merugikan investor. Callable bond menimbulkan masalah dalam perhitungan harga wajar karena jangka waktu obligasi hingga dilunasi tidak pasti. Bab 9 Matematika Keuangan Edisi 3 - 2010

Contoh 9.3 PT XYZ menerbitkan obligasi dengan nilai pari Rp 1 milyar berjangka waktu 20 tahun dengan bunga j2 = 12%. Obligasi itu dapat ditebus pada akhir tahun ke-10 pada harga 110 atau pada akhir tahun ke-15 pada harga 105. Berapa harga obligasi yang menjamin investor memperoleh yield minimum j2 = 11%? Jawab: F = P20 = Rp 1.000.000.000 P10 = Rp 1.100.000.000 P15 = Rp 1.050.000.000 n = 20 tahun = 40 semester npenebusan = 10 tahun (20 semester) dan 15 tahun (30 semester) c = 12% p.a. = 6% per semester C = 6% x Rp 1.000.000.000 = Rp 60.000.000 i = 11% p.a. = 5,5% per semester Bab 9 Matematika Keuangan Edisi 3 - 2010

Bab 9 Matematika Keuangan Edisi 3 - 2010

Harga yang menjamin yield minimum investor j2 = 11% adalah harga terendah di antara ketiga harga di atas yaitu Rp 1.080.230.623,4. Bab 9 Matematika Keuangan Edisi 3 - 2010

AMORTISASI PREMIUM DAN DISKON OBLIGASI Jika yield sama dengan bunga obligasi yang dibayarkan maka harga wajar obligasi adalah sebesar nilai nominal pari-nya. Jika yield lebih rendah dari bunga obligasi yang dibayarkan, hal ini lebih menarik investor sehingga bersedia membayar di atas nilai pari-nya  obligasi dijual dengan premium. Jika yield lebih tinggi dari bunga obligasi yang dibayarkan, hal ini kurang menarik investor sehingga harus dijual di bawah nilai pari-nya  obligasi dijual dengan diskon. Penyesuaian nilai premium dan diskon obligasi secara periodik hingga tidak ada lagi pada saat jatuh tempo disebut amortisasi premium/diskon atau amortisasi agio/disagio. Cara menghitung amortisasi diskon/ premium: Metode bunga efektif Metode garis lurus membagi sama besar diskon dan premium untuk setiap periode. Bab 9 Matematika Keuangan Edisi 3 - 2010

Contoh 9.4 Susunlah tabel amortisasi sebuah obligasi bernilai nominal Rp 500.000.000, jatuh tempo 10 tahun lagi dengan kupon j1 = 15% jika investor mengharapkan yield 10% p.a. Jawab: Harga wajar obligasi : Bab 9 Matematika Keuangan Edisi 3 - 2010

Tabel amortisasi premium obligasi (metode bunga efektif) Bab 9 Matematika Keuangan Edisi 3 - 2010

METODE GARIS LURUS Alternatif lain untuk menghitung amortisasi premium dan diskon obligasi adalah dengan menggunakan metode garis lurus. Dalam contoh 9.4 di atas, besar amortisasi premium per periode adalah: Sedang dalam contoh 9.5 di atas, besar amortisasi diskon setiap periode adalah: Bab 9 Matematika Keuangan Edisi 3 - 2010

Tabel amortisasi premium obligasi (metode garis lurus) Periode Amortisasi Premium Nilai Buku Obligasi Rp 653.614.177,6 1 Rp 15.361.417,76 Rp 638.252.759,8 2 Rp 622.891.342,0 3 Rp 607.529.924,3 4 Rp 592.168.506,5 5 Rp 576.807.088,8 6 Rp 561.445.671,0 7 Rp 546.084.253,2 8 Rp 530.722.835,5 9 Rp 515.361.417,7 10 Rp 500.000.000 Bab 9 Matematika Keuangan Edisi 3 - 2010

Contoh 9.5 Susunlah tabel amortisasi sebuah obligasi bernilai nominal Rp 1.000.000.000, yang dikeluarkan 1 Januari 2009 dan jatuh tempo 5 tahun lagi dengan kupon j2 = 8% jika investor mengharapkan yield 10% p.a. Hitung juga nilai buku obligasi per 1 Juli 2011. Jawab: Harga wajar obligasi : Bab 9 Matematika Keuangan Edisi 3 - 2010

Tabel amortisasi diskon obligasi (metode bunga efektif) Bab 9 Matematika Keuangan Edisi 3 - 2010

Tabel amortisasi diskon obligasi (metode garis lurus) Periode Amortisasi Diskon Nilai Buku Obligasi 1 Jan 2009 - Rp 922.782.650,7 1 Juli 2009 Rp 7.721.734,9 Rp 930.504.385,6 1 Jan 2010 Rp 938.226.120,5 1 Juli 2010 Rp 945.947.855,7 1 Jan 2011 Rp 953.669.590,3 1 Juli 2011 Rp 961.391.325,2 1 Jan 2012 Rp 969.113.060,1 1 Juli 2012 Rp 976.834.795,0 1 Jan 2013 Rp 984.556.529,9 1 Juli 2014 Rp 992.278.264,8 1 Jan 2014 Rp 1.000.000.000 Bab 9 Matematika Keuangan Edisi 3 - 2010

OBLIGASI TAK BERBUNGA (ZERO COUPON BOND) Zero-coupon bond = obligasi yang tidak membayar bunga secara periodik tetapi hanya membayar sebesar nilai nominal pada saat jatuh tempo. Untuk menarik investor, obligasi ini dijual dengan diskon sangat besar sehingga disebut deep-discount bond. Harga wajar obligasi tak berbunga adalah nilai sekarang dari nilai nominal obligasi. Bab 9 Matematika Keuangan Edisi 3 - 2010

Contoh 9.6 Sebuah obligasi tak berbunga yang bernilai nominal Rp 100.000.000 jatuh tempo dalam 10 tahun. Tentukan harga wajar obligasi jika investor mengharapkan yield j2 = 14%. Jawab: F = Rp 100.000.000 n = 10 tahun i = Bab 9 Matematika Keuangan Edisi 3 - 2010

HARGA OBLIGASI DI ANTARA DUA TANGGAL PEMBAYARAN BUNGA Transaksi jual beli terjadi di antara dua tanggal pembayaran bunga. Investor harus menghitung bunga yang terkandung atau bunga terutang (accrued interest). Pq = P0 + f (P1 – P0) Bunga terutang (accrued interest) = AI = f x C dan P = Pq + AI Bab 9 Matematika Keuangan Edisi 3 - 2010

dengan :. P0. = Harga wajar obligasi pada tanggal dengan : P0 = Harga wajar obligasi pada tanggal pembayaran bunga terakhir. P1 = Harga wajar obligasi pada tanggal pembayaran bunga berikutnya. f = jumlah hari yang telah lewat sejak tanggal pembayaran bunga terakhir dibagi dengan total jumlah hari antara dua tanggal pembayaran bunga (yang lalu dan yang berikutnya). Pq = Harga penawaran obligasi di pasar (market quotation) dan tidak termasuk bunga. P = Harga yang harus dibayarkan pembeli. Bab 9 Matematika Keuangan Edisi 3 - 2010

Contoh 9.7 Sebuah obligasi bernilai nominal Rp 1 milyar dengan kupon j2 = 9,5% dan jatuh tempo pada 15 Agustus 2004. Obligasi ini dijual pada tanggal 1 September 2004 dengan harga penawaran pasar (market quotation) 103,25. Berapa yang harus dibayar pembeli? Bab 9 Matematika Keuangan Edisi 3 - 2010

Jawab: Tanggal-tanggal pembayaran: 15 Februari dan 15 Agustus Jawab: Tanggal-tanggal pembayaran: 15 Februari dan 15 Agustus. Jumlah hari antara 15 Agustus 2004 dan 15 Februari 2005 adalah 184 hari. Jumlah hari antara 15 Agustus 2004 dan 1 September 2004 adalah 17 hari. Jadi, bunga terutang adalah : Harga yang harus dibayar pembeli adalah : P = Pq + AI P = Rp 1.032.500.000 + Rp 4.388.587 P = Rp 1.036.888.587 Bab 9 Matematika Keuangan Edisi 3 - 2010

PENCARIAN YIELD Ada kalanya harga pasar sebuah obligasi diberikan tanpa dinyatakan yield. Metode yang biasa digunakan untuk mencari yield sama dengan metode untuk mencari tingkat bunga efektif pada anuitas, yaitu dengan interpolasi linier plus trial and error. Pencarian yield dengan trial and error tanpa interpolasi sangat sulit, tetapi dengan bantuan scientific calculator dan mengoptimalkan penggunaan fungsi memory, cara ini memberikan hasil yang lebih akurat dibandingkan dengan metode interpolasi linier. Bab 9 Matematika Keuangan Edisi 3 - 2010

3 konsep yield dalam investasi obligasi: Yield sekarang (current yield) = imbal hasil yang diberikan obligasi pada saat ini. Yield sekarang menghubungkan kupon tahunan yang diperoleh investor obligasi dengan harga yang dibayarkan atau harga pasar obligasi. Yield hingga tanggal penebusan (Yield to call – YTC) = hanya ada dalam obligasi yang dapat ditebus. Yield to maturity. Bab 9 Matematika Keuangan Edisi 3 - 2010

Persamaan praktis untuk mencari Yield Persaman praktis yang lebih sederhana ini, akan memberikan hasil yang kurang akurat tetapi cukup memadai. 1. Yield sekarang (current yield) 2. Yield to call (YTC) 3. Yield to maturity (YTM) Bab 9 Matematika Keuangan Edisi 3 - 2010

Contoh 9.9 ORI 005 yang berkupon 11,45% p.a ditawarkan pada harga 102 pada Juni 2009. Hitung yield sekarang obligasi ini. Jawab: Bab 9 Matematika Keuangan Edisi 3 - 2010

Contoh 9.10 Sebuah obligasi bernilai nominal Rp 500.000.000 dengan bunga j2 = 9,5% dan jatuh tempo pada tanggal 1 Juli 2022 ditawarkan pada harga 109,5 per 1 Juli 2010. Hitunglah yield j2. Jawab : F = Rp 500.000.000 n = 12 tahun = 24 semester Dengan yield j2 = 8% atau i = 4% maka: Bab 9 Matematika Keuangan Edisi 3 - 2010

Dengan yield j2 = 9% atau i = 4,5% maka: Bab 9 Matematika Keuangan Edisi 3 - 2010

Kita mencari i yang memenuhi : Jadi i berada di antara 4% dan 4,5%. Bab 9 Matematika Keuangan Edisi 3 - 2010

Contoh 9.12 Sebuah obligasi bernilai nominal Rp 500.000.000 dengan bunga j12 = 9,5% dan jatuh tempo pada tanggal 1 Juli 2022 ditawarkan pada harga 109,5 per 1 Juli 2010. Hitung yield j2. Jawab: n = 24 semester R = F = 100% P = 109,5% C = = 4,5346% + (-0,3779%) = 4,1567% per semester atau 8,3134% p.a Hasil ini berbeda 0,07% dari hasil dengan menggunakan metode interpolasi linier atau trial and error. Inilah yang dimaksud, memberikan hasil akhir yang kurang akurat. Bab 9 Matematika Keuangan Edisi 3 - 2010