TRIGONOMETRI Pengertian Perbandingan Trigonometri

Slides:



Advertisements
Presentasi serupa
SERBA SERBI PHYTAGORAS
Advertisements

KUIS PEND MAT II  CEPAT DAN TEPAT .
Dimensi Tiga (Proyeksi & Sudut).
Translasi Rotasi Refleksi Dilatasi
1 ANALISA VARIABEL KOMPLEKS Oleh: Drs. Toto’ Bara Setiawan, M.Si. (
PROGRAM STUDI PENDIDIKAN MATEMATIKA
BANGUN DATAR DAN BANGUN RUANG
Limas, Kerucut, Tabung, Bola
TRIGONOMETRI Standar Kompetensi Kompetensi Dasar
Bangun Ruang Tiga Dimensi
Muhammad Zainal Abidin | SMAN 1 Bone-Bone
Sudut Elevasi dan Depresi
TRIGONOMETRI IDIKATOR: MEMBUKTIKAN KESAMAAN TRIGONOMETRI
Dengan matematika kita dapat taklukkan dunia
Assalamu’alaikum Wr.Wb
Sudut Antara Dua Bidang
ADVANCED TRIGONOMETRY page 126
SMP NEGERI 1 PALIMANAN MATERI : KESEBANGUNAN DAN KEKONGRUENAN
BAB 9 DIMENSI TIGA.
Materi Kuliah Kalkulus II
Dimensi tiga jarak.
Tugas: Power Point Nama : cici indah sari NIM : DOSEN : suartin marzuki.
B B A A N N G G U U N N D D A A T T A A R R Safitri Eka Ambarwati / PGSD Universitas Sanata Dharma.
Kompetensi Dasar : Menentukan penyelesaian model matematika yang berhubungan dengan perbandingan , fungsi, persamaan dan identitas trigonometri Menafsirkan.
3. Menggambar dan menghitung besar sudut antara dua bidang.
Persamaan Linier dua Variabel.
SMK PEMBANGUNAN KARANGMOJO
PERBANDINGAN TRIGONOMETRI
PELATIHAN MATEMATIKA GURU SMK MODEL SENI/PARIWISATA/BISNIS MANAJEMEN
SEGI EMPAT 4/8/2017.
MATEMATIKA KELAS XI IPA
Fungsi Invers, Eksponensial, Logaritma, dan Trigonometri
Assalamu’alaikum Wr.Wb.
Penerapan Trigonometri
SMP Negeri 1 Tasikmalaya
TEOREMA PYTHAGORAS.
SEGI EMPAT Oleh : ROHMAD F.F., S.Pd..
Bagian ke-1.
Balok Yang akan kita pelajari: Unsur-unsur balok Luas permukaan balok
MGMP MATEMATIKA SMK DKI JAKARTA
Dimensi Tiga (Jarak) SMA 5 Mtr.
Perbandingan Trigonometri
KELAS XI IPA 5 TRIGONOMETRI Anggit Nuzula 04 Arizky Fathurramdhan 06
Disusun oleh : Fitria Esthi K A
Teorema Pythagoras dan Perbandingan Trigonometri
Sifat-Sifat Bangun Datar
TRIGONOMETRI.
TRIGONOMETRI. TRIGONOMETRI KOMPETENSI DASAR 3.15 Memahami konsep perbandingan trigonometri pada segitiga siku-siku melalui penyelidikan dan diskusi.
Peminatan Matematika dan Ilmu-Ilmu Alam
SMA Negeri 15 Tangerang TRIGONOMETRI Matematika SMA
ATURAN COSINUS DAN LUAS SEGITIGA
Bahan Ajar Trigonometri - Oleh : Drs. Matrisoni
TRIGONOMETRI KAPITA SELEKTA SMA Ratna Sariningsih.,M.Pd.
Kelompok 5 : Asri H M Salman Galileo Pandji Zamzami Rizky Gifari
By : Eka Febianjani Putri Pendidikan Matematika / 3E
BAB 8 TRIGONOMETRI Sumber gambar : peusar.blogspot.com.
TRIGONOMETRI.
TRIGONOMETRI.
0leh: Drs. Markaban, M.Si Widyaiswara PPPPTK Matematika
Perbandingan trigonometri pada sudut-sudut khusus.
Trigonometri Rumus Rasio Trigonometri Dasar untuk Jumlah Dua sudut dan
MEDIA PEMBELAJARAN MATEMATIKA Keliling & Luas Segitiga
Assalamu’alaikum.wr.wb.
TRIGONOMETRI BERASAL DARI KATA TRI YANG BERKEPANJANGAN TRRIANGEL(SEGITIGA) DAN GONOMETRI YANG BERARTI UKURAN, SEHINGGA DAPAT DISIMPULKAN BAHWA TERNYATA.
KUBUS UNSUR-UNSUR KUBUS.
PERBANDINGAN TRIGONOMETRI PADA SEGITIGA SIKU-SIKU
TRIGONOMETRI.
SEGITIGA DAN SEGIEMPAT
Peta Konsep. Peta Konsep C. Perbandingan Trigonometri Sudut-sudut Istimewa.
Dengan matematika kita dapat taklukkan dunia ? Sumber gambar : peusar.blogspot.com.
Transcript presentasi:

TRIGONOMETRI Pengertian Perbandingan Trigonometri Nilai Sinus, Cosinus dan Tangen Teorema Phytagoras Aturan Sinus dan Cosinus Jumlah dan selisih dari sinus dan cosinus P2BPT Matematika

Pengertian Perbandingan Trigonometri X A P1 P2 P3 M2 M3 Titik P1, P2, dan P3 terletak pada garis OA. Titik M1, M2, dan M3 terletak pada garis OX. Jika titik-titik P1, P2, dan P3 dihubungkan dengan titik-titik M1, M2, dan M3 sedemikian sehingga P1M1, P2M2, dan P3M3 tegaklurus pada OX, maka akan terbentuk tiga buah segitiga siku-siku, yaitu ∆OM1P1, ∆OM2P2, dan ∆OM3P3 yang sebangun. Akibatnya, a. yang disebut sinus b. yang disebut cosinus c. yang disebut tangen P2BPT Matematika

didefinisikan sebagai berikut: Dengan mengacu gambar berikut, maka ketiga perbandingan trigonometri dapat didefinisikan sebagai berikut: ao sisi miring ( mi ) sisi depan ao ( de ) sisi samping ao ( sa ) O P M Contoh 1 : Tentukan ketiga perbandingan trigonometri dari setiap segitiga siku-siku berikut untuk sudut do! s t r do ( iii ) r p q do ( ii ) do c a b ( i ) P2BPT Matematika

Tentukan sin θ dan cos θ dari segitiga siku-siku pada gambar berikut Contoh 2: Tentukan sin θ dan cos θ dari segitiga siku-siku pada gambar berikut θ 4 3 Daftar nilai sinus, cosinus, dan tangen sudut istimewa ao 0o 30o 45o 60o 90o sin ao ½ ½ √2 ½ √3 1 cos ao tan ao √3 ~ P2BPT Matematika

TEOREMA PHYTAGORAS A B C sisi siku-siku hypotenusa Pada segitiga ABC ini, sisi terpanjang atau sisi di depan sudut siku-siku, yaitu AC disebut hypotenusa (sisi miring), sedangkan kedua sisi yang lainnya, yaitu AB dan BC disebut sisi siku-sikunya. Pada segitiga siku-siku, luas persegi pada hypotenusa sama dengan jumlah luas persegi pada kedua sisi siku-sikunya. Jadi, jika pada segitiga siku-siku panjang hypotenusanya a, panjang kedua sisi siku-sikunya b dan c, maka a2 = b2 + c2 Bentuk seperti a2 = b2 + c2 atau disebut rumus phytagoras P2BPT Matematika

Contoh 1: Contoh 2: Diketahui balok ABCD.EFGH dengan panjang rusuk Diagonal suatu persegi panjang 20 cm dan lebarnya 12 cm. Hitung panjangnya! Contoh 2: Diketahui balok ABCD.EFGH dengan panjang rusuk AB = 8 cm, BC = 6 cm, dan CG = 5 cm. Hitung: panjang diagonal sisi AC panjang diagonal ruang AG P2BPT Matematika

Contoh 3: Seorang anak mengamati puncak pohon cemara yang berdiri tegak di atas lapangan mendatar dengan sudut elevasi 30o. Jika jarak antara anak dan pohon tersebut 12 m dan tinggi dari tanah ke mata anak 1,5 m. Hitunglah tinggi pohon tersebut! Sudut elevasi adalah sudut yang dibentuk oleh arah pandang dan arah horisontal jika kita memandang ke atas. Solusi : Tinggi pohon 8,4 m Contoh 4: Seorang pengamat berada di puncak menara yang tingginya 23 m. Pada suatu saat pengamat tersebut melihat sebuah perahu yang akan berlabuh. Jika sudut depresi perahu tersebut 30o. Hitunglah jarak antara perahu dan menara pada saat itu! Sudut depresi adalah sudut yang dibentuk oleh arah pandang dan arah horisontal jika kita memandang ke bawah. Solusi : Jarak antara perahu dan menara adalah 39,8 m P2BPT Matematika

Aturan Sinus Pada setiap segitiga ABC berlaku Contoh 1: Y X A C B D c a b Pada setiap segitiga ABC berlaku Contoh 1: Pada ∆ ABC, sisi b = 4,2 , A = 62o dan B = 46o. Hitunglah sisi a. Jawab: P2BPT Matematika

Aturan Kosinus Pada setiap segitiga ABC berlaku Contoh 2 : Pada ∆ ABC, sisi c = 5,8, sisi b = 6,7, dan B = 48o. Hitunglah C . Aturan Kosinus A C (b,0) B (c cos A, c sin A) c a b X Y Pada setiap segitiga ABC berlaku Contoh : Pada ∆ ABC, a = 4,36, b = 3,84 dan C = 101o. Hitunglah c. Jawab : c2 = a2 + b2 – 2ab cos C = (4,36)2 + (3,84)2 – 2 (4,36) (3,84) cos 101o = 6,34 P2BPT Matematika

Rumus perkalian dari sinus dan kosinus ……………………(1) ……………………(2) ……………………(3) ……………………(4) Rumus (1) tambah (2) menghasilkan Jadi …………………..(A) Contoh 1: 2 cos 43o cos 35o = cos (43+35)o + cos (43-35)o = cos 78o + cos 8o Contoh 2: 2 cos 65o cos 25o = cos (65+25)o + cos (65-25)o = cos 90o + cos 40o = 0 + cos 40o = cos 40o P2BPT Matematika

Rumus (2) dikurangi (1) menghasilkan Jadi …………………..(B) Contoh 3: 2 sin 27o sin 14o = cos (27-14)o – cos (27+14)o = cos 13o – cos 41o Contoh 4: 2 sin 1/3 π sin 1/6 π = cos 1/6 π – cos ½ π = ½ √3 Rumus (3) tambah (4) menghasilkan Jadi …………………..(C) P2BPT Matematika

Rumus (3) dikurangi (4) menghasilkan Jadi …………………..(D) Jumlah dan Selisih Dari Substitusikan α + β = C yang menghasilkan α = ½ ( C + D ) α - β = D yang menghasilkan β = ½ ( C - D ) sehingga cos C + cos D = 2 cos ½ ( C + D ) cos ½ ( C – D ) cos C - cos D = -2 sin ½ ( C + D ) sin ½ ( C – D ) sin C + sin D = 2 sin ½ ( C + D ) cos ½ ( C - D ) sin C - sin D = 2 cos ½ ( C + D ) sin ½ ( C - D ) P2BPT Matematika

Rumus-rumus untuk sudut rangkap Contoh 1 : sin 32o + sin 28o = 2 sin 30o cos 2o = cos 2o Contoh 2 : cos 5θ – cos 3θ = -2 sin 4θ sinθ Rumus Penjumlahan cos (a+b) = cos a cos b – sin a sin b cos (a-b) = cos a cos b + sin a sin b sin (a+b) = sin a cos b + cos a sin b sin ( a-b) = sin a cos b – cos a sin b Rumus-rumus untuk sudut rangkap sin 2a = 2 sin a cos a cos 2a = cos2 a – sin2 a = 2 cos2a -1 = 1 – 2 sin2 a cos2 a = ½ (1 + cos 2a) sin2 a = ½ (1 – cos 2a) P2BPT Matematika