(Tes Prestasi Belajar – Pertemuan 2)

Slides:



Advertisements
Presentasi serupa
Statistika dan Aplikasi Komputer Sesi 2: Ukuran Sentral dan Persebaran
Advertisements

PENYEBARAN DATA Tujuan Belajar :
STATISTIKA DESKRIPTIF
UKURAN-UKURAN STATISTIK
TENDENSI SENTRAL.
di Matematika SMA Kelas XI Sem 1 Program IPS
STATISTIKA DAN PELUANG
Ukuran Pemusatan dan Ukuran Penyebaran
KELOMPOK 3 Nama Anggota : Fahmi Aldy Rivaldi Gusti. F Puji Hariyanti
PENGUKURAN GEJALA PUSAT / NILAI PUSAT/UKURAN RATA-RATA
UKURAN PENYIMPANGAN WAHYU WIDODO.
BAB VI UKURAN VARIASI ATAU DISPERSI (Pengukuran Dispersi) (Pertemuan ke-8) Oleh: Andri Wijaya, S.Pd., S.Psi., M.T.I. Program Studi Sistem Informasi Sekolah.
Ukuran Penyimpangan (Dispersi)
UKURAN TENDENSI SENTRAL DAN PENYIMPANGAN
Ukuran Tendensi Sentral

Pertemuan 5: UKURAN PENYEBARAN DATA DAN KEMIRINGAN DIAGRAM
UKURAN TENDENSI Ukuran Penyebaran (measure of variability)
Nilai - Nilai Variasi Prepared: TOTOK SUBAGYO, ST,MM.
TEKNIK ANALISIS DATA.
MENGHITUNG STATISTIKA DESKRIPTIF
TENDENSI SENTRAL.
UKURAN DISPERSI (PENYEBARAN DATA)
STATISTIK DESKRIPTIF.
UKURAN PENYEBARAN (VARIABILITAS)
(KECENDERUNGAN MEMUSAT)
Gejala Pusat dan Ukuran Letak
Perhitungan jumlah dan presentasi data
UKURAN PENYEBARAN DATA
BIOSTATISTIK DESKRIPTIF
UKURAN NILAI SENTRAL&UKURAN PENYEBARAN
Ukuran Nilai Sentral : Modus dan median.
FUNGSI STATISTIK. SEBAGAI ALAT PENYAJI DATA.
UKURAN VARIASI ATAU DISPERSI (Pengukuran Dispersi)
UKURAN PENYEBARAN.
STATISTIK1 Pertemuan 5: Ukuran Penyebaran Dosen Pengampu MK:
II. STUDI DESKRIPTIF DATA
UKURAN NILAI SENTRAL&UKURAN PENYEBARAN
KIMIA ANALISIS Konsep Statistika.
Ukuran Pemusatan - Data Berkelompok
Statistika Pertemuan ke – 8 dan ke – 9.
Analisa
UKURAN DISPERSI (PENYEBARAN DATA)
STATISTIK1 Pertemuan 3: Ukuran Pemusatan dan Penyebaran
PENGUKURAN STATISTIK BAG 2 (UKURAN PENYEBARAN DATA)
Probabilitas dan Statistika
UKURAN NILAI SENTRAL&UKURAN PENYEBARAN
? 1. Konsep Statistika STATISTIKA : Kegiatan untuk : mengumpulkan data
BAB 4 UKURAN PENYEBARAN.
OLEH : RESPATI WULANDARI, M.KES
STATISTIKA Pertemuan 3: Ukuran Pemusatan dan Penyebaran
Ukuran Pemusatan Data Choirudin, M.Pd
STATISTIKA Pertemuan 3: Ukuran Pemusatan dan Penyebaran
Ukuran Pemusatan (2).
BAB 4 UKURAN PENYEBARAN.
Ukuran Pemusatan Data Choirudin, M.Pd
PENGANTAR BIOSTATISTIK
ALAT-ALAT MANAJEMEN (2)
UKURAN DISPERSI (PENYEBARAN DATA)
BAB 4 UKURAN VARIABILITAS
STATISTIKA DESKRIPTIF
Ukuran Pemusatan dan Ukuran Penyebaran
UKURAN PENYEBARAN.
UKURAN PENYEBARAN.
BAB 4 UKURAN PENYEBARAN.
BAB 4 UKURAN PENYEBARAN.
Pertemuan 4 Ukuran Pemusatan
1 UKURAN PENYEBARAN. 2 PENGGUNAAN UKURAN PENYEBARAN Rata-rata bunga bank 11,43% per tahun, namun kisaran bunga antar bank dari 7,5% - 12,75% Rata-rata.
OLEH : SITTI HAWA, ST, MPW.  Ukuran pemusatan atau disebut rata – rata adalah menunjukan dimana suatu data memusat atau suatu kumpulan pengamatan memusat.
STATISTIKA DESKRIPTIF Tendensi Sentral & Ukuran Dispersi KELOMPOK 2.
Transcript presentasi:

(Tes Prestasi Belajar – Pertemuan 2) Konstruksi alat ukur (Tes Prestasi Belajar – Pertemuan 2)

STATISTIKA UNTUK PENGUKURAN Statistika Deskriptif Mendeskripsikan kumpulan data Statistika Inferensial Melakukan estimasi terhadap suatu besaran populasi berdasarkan besaran data sampel

STATISTIKA UNTUK PENGUKURAN Distribusi Frekuensi Persentil dan Jenjang Persentil Menghitung Persentil Menghitung Jenjang Persentil Ukuran-ukuran Tendensi Sentral Ukuran-ukuran Variabilitas

Distribusi frekuensi Data (Tinggi badan, usia) Data Kuantitatif (Tingkat pendidikan, Data Kualitaif Distribusi frekuensi  Susunan data yang menempatkan angka terkecil di atas dan angka yang besar di atas secara berturut-turut. Berikut ini merupakan contoh tabel distribusi frekuensi

KETERANGAN TABEL 1 p = f/N pk = fk/N f = frekuensi fk = frekuensi kumulatif (banyaknya individu yang memiliki angka tersebut dan yang lebih rendah) p = proporsi (pemilik setiap angka) pk = proporsi kumulatif (proporsi individu yang memiliki angka yang bersangkutan dan yang lebih rendah)

Persentil dan jenjang persentil Persentil (Pn) : Berkaitan dengan kedudukan atau posisi relatif angka dalam suatu distribusi frekuensi P30 = x  Dalam suatu distribusi frekuensi, terdapat 30% angka lain yang nilainya lebih kecil daripada x Jenjang persentil (PR) : Besarnya persentase frekuensi yang lebih kecil daripada angka tersebut PR (x=11) adalah 63  Dalam suatu distribusi frekuensi, angka 11 lebih besar daripada 63% angka lainnya yang terdapat dalam distribusi frekuensi tersebut Jelaskanlah kaitannya!

Menghitung persentil 1) Bila pada titik persentil tidak ada angka kembar P88,50 = angka yang lebih besar daripada 88,5% angka-angka lainnya dalam suatu distribusi frekuensi. Persentase ini dinyatakan dalam proporsi (pk) 0,885. (Lihat kolom pk pada Tabel 1) pk 0,885  x = 34  f = 1 P88,50 = (33+34)/2 = 33.5

2) Bila pada titik persentil terdapat angka kembar P75 (Lihat kolom pk pada Tabel 1) pk 0,75  x = 29  f = 8 (pk 0,768) x = 28  f = 4 (pk 0,716) Sebagian proporsi angka 29 harus diikutkan ke angka 28 agar pk =0,75. Proporsi yang harus ditambahkan ini adalah 0,750-0,716 = 0,034. P75 = Batas atas + 0,034 = 28,5 + 0,034 = 28,534

Menghitung jenjang persentil 1) Bila pada titik persentil tidak ada angka kembar Contoh : mencari PR untuk angka 34 pk untuk x = 33 adalah 0,884 yang berarti terdapat 88,4% angka yang nilainya lebih kecil daripada 33 p untuk x = 34 adalah 0,006 Jenjang persentil (PR) ditentukan dengan menambahkan proporsi kumulatif (pk) di bawah batas bawah titik persentil dengan setengah proporsi (p) pada titik persentil, seperti di bawah ini : PR (x=34) = (0,884 + 0,006/2) * 100% = 88,7%

2) Bila pada titik persentil terdapat angka kembar Contoh : mencari PR untuk angka 38 x = 38  f = 2  batas bawah = 37,5 pk 37,5 = 0,968 p untuk x = 38 adalah 0,013 PR(x=38) = (0,968+0,013/2)*100% = 97,45%

Ukuran-ukuran tendensi sentral Tendensi sentral dalam statistik menunjukkan pengelompokkan angka dalam suatu distribusi frekuensi. Tendensi Sentral Mean Median Modus

TABEL 2 TABEL 3

1) Modus Modus dalam suatu distribusi frekuensi didefinisikan sebagai angka yang paling tinggi frekuensinya 2) Median Median didefinisikan sebagai angka yang membatasi 50% (0,5 proporsi) frekuensi angka terendah dan angka tertinggi dalam suatu distribusi. Pengertian mengenai median sama saja dengan pengertian persentil ke 50, sehingga median sama dengan P50. Cobalah hitung! 3) Mean Mean adalah rata-rata matematik yang dihitung melalui jumlah semua angka dibagi oleh banyaknya angka yang dijumlahkan. Cobalah hitung!

Ukuran-ukuran variabilitas Variabilitas adalah variasi atau keanekaragaman angka-angka dalam suatu distribusi Semakin luas penyebaran angka-angka dan semakin beragam angka yang ada berarti semakin besar variabilitas distribusinya, sehingga dinamai distribusi heterogen, begitu pula sebaliknya Variabilitas Jarak Sebaran Deviasi rata2 Varians

1) Jarak Sebaran (range) Jarak sebaran adalah selisih angka yang tertinggi dan angkayang terendah. 2) Deviasi rata-rata Deviasi rata-rata didefinisikan sebagai rata-rata penyimpangan angka dari mean yang dihitung berdasarkan selisih antara angka tersebut dengan mean, yaitu (X-M). Rumus deviasi rata-rata : ∑f |X-M| : N Semakin besar angka deviasi rata-rata, maka dapat diperoleh gambaran bahwa distribusi heterogen.

3) Varians Varians merupakan ukuran variabilitas skor yang memberikan gambaran yang stabil dan lebih akurat mengenai penyebaran skor. s2 = ∑ f(X-M)2/(N-1) atau s2 = ∑fX2 - (∑fX)2/N N-1 Dalam hal tertentu, varians sering dinyatakan dalam bentuk deviasi standar yang merupakan akar pangkat 2 dari varians.