UKURAN PENYIMPANGAN WAHYU WIDODO.

Slides:



Advertisements
Presentasi serupa
Ukuran Variabilitas Data
Advertisements

DESKRIPSI DATA Pertemuan 9 1. Pendahuluan : Sering digunakan peneliti, khususnya dalam memperhatikan perilaku data dan penentuan dugaan-dugaan yang selanjutnya.
UKURAN PENYIMPANGAN WAHYU WIDODO.
BAB II ANALISA DATA.
MATERI STATISTIK BISNIS
STATISTIKA CHATPER 5 (SKEWNESS & KURTOSIS)
Ukuran Variasi atau Dispersi
Ukuran Variasi atau Dispersi
Dosen: Lies Rosaria, ST., MSi
KOEVISIEN VARIASI Pertemuan 9. Koevisien Variasi.

DISPERSI RELATIF, KECONDONGAN & KURTOSIS
HOMOGEN DAN HETEROGEN DATA
DEVIASI/SIMPANGAN STATISTIK DESKRIPTIF
Statistik Diskriptif.
KOEVISIEN VARIASI Pertemuan 9. Koevisien Variasi.
Denny Agustiawan JURUSAN TEKNIK INFORMATIKA STMIK ASIA MALANG
STATISTIK DESKRIPTIF Sarwanto.
STATISTIK DESKRIPTIF Pengumpulan data, pengorganisasian, penyajian data Distribusi frekuensi Ukuran pemusatan Ukuran penyebaran Skewness, kurtosis.
UKURAN PENYEBARAN (VARIABILITAS)
Ukuran Dispersi.
Ukuran Kemiringan (Skewness) dan Ukuran Keruncingan (Kurtosis)
STATISTIK 1 Pertemuan 9: Ukuran Kemencengan dan Keruncingan
UKURAN DISTRIBUSI
UKURAN NILAI SENTRAL&UKURAN PENYEBARAN
BAB 6 UKURAN DISPERSI.
Harga Deviasi (Ukuran Penyebaran).
Ukuran Penyebaran Relatif
Ukuran Kecondongan.
Ukuran Penyebaran Data
Ukuran kemiringan & ukuran keruncingan
UKURAN DISPERSI.
UKURAN NILAI SENTRAL&UKURAN PENYEBARAN
Ukuran penyebaran.
Kemiringan & keruncingan distribusi data
Ukuran Variasi atau Dispersi
DEVIASI/SIMPANGAN STATISTIK DESKRIPTIF
UKURAN PENYEBARAN
UKURAN SIMPANGAN, DISPERSI & VARIASI
Ukuran Kemiringan dan Keruncingan
UKURAN KERUNCINGAN (KURTOSIS)
Ukuran Dispersi.
UKURAN VARIASI NAMA :DWI INDAHSARI NIM : NO ABSEN: 52 KELAS : 11.2A.05
Probabilitas dan Statistika
BAB 5 DISPERSI, KEMIRINGAN DAN KERUNCINGAN DISTRIBUSI DATA.
UKURAN NILAI SENTRAL&UKURAN PENYEBARAN
Ukuran Variasi atau Dispersi
STATISTIKA DESKRIPTIF
BAB 4 UKURAN PENYEBARAN.
Ukuran Variasi atau Dispersi
Ukuran Variasi atau Dispersi
UKURAN VARIASI NAMA : Riza Wahyu Lisdyana NIM : NO ABSEN : 30
STATISTIKA BAB 6 RIZKA AULIA ( )
UKURAN PENYEBARAN DATA
BAB 4 UKURAN VARIABILITAS
Skewness dan Kurtosis Ria Faulina, M.Si.
Ukuran Variasi atau Dispersi
Contoh soal kemiringan :
Contoh soal kemiringan :
Universitas Pekalongan
UKURAN PENYEBARAN.
UKURAN PENYEBARAN.
BAB 4 UKURAN PENYEBARAN.
BAB 4 UKURAN PENYEBARAN.
BAB VII UKURAN UKURAN KEMIRINGAN & KERUNCINGAN
PENGUKURAN DISPERSI, KEMIRINGAN, DAN KERUNCINGAN DISTRIBUSI DATA
PENGUKURAN DISPERSI, KEMIRINGAN, DAN KERUNCINGAN DISTRIBUSI DATA
DESKRIPSI DATA Pertemuan 3.
Ukuran pemusatan dan letak data
Rata-rata bunga bank 11,43% per tahun, namun kisaran bunga antar bank dari 7,5% - 12,75% Rata-rata inflasi Indonesia sebesar 18,2% dengan kisaran antara.
Transcript presentasi:

UKURAN PENYIMPANGAN WAHYU WIDODO

ASSALAAMU ‘ALAIKUM WARAKHMATULLAAHI WABAROKAATUH BISMILLAHIRAHMANIRRAHIM 2

SILABI Definisi Jenis Ukuran Penyimpangan Rentang, Rentang antar kuartil dan Simpangan (deviasi) kuartil Rata-rata simpangan Simpangan baku (deviasi standart) dan Variansi Koefisien variasi Kemencengan Ukuran Penyebaran Relatif 3

DEFINISI Ukuran penyebaran data adalah suatu ukuran yang menyatakan seberapa besar nilai-nilai data berbeda atau bervariasi dengan nilai ukuran pusatnya atau seberapa besar penyimpangan nilai-nilai data dengan nilai pusatnya.

JENIS UKURAN PENYIMPANGAN Terdiri dari: Rentang Rentang antar kuartil Simpangan (deviasi) kuartil Rata-rata simpangan Simpangan baku (deviasi standart) Varians Koefisien variasi Kemencengan

Rentang, rentang antar kuartil dan simpangan kuartil Rentang = data terbesar – data terkecil Rentang antar kuartil = K3 – K1, dimana K3 = kuaril ketiga dan K1 = kuartil pertama Simpangan kuartil/deviasi kuartil/rentang semi antar kuartil harganya setengah dari rentang antar kuartil SK = ½ (K3 – K1)

Simpangan baku/Deviasi Standar dan variansi Variansi (s2) adalah harga penyimpangan/deviasi yang juga memperhitungkan deviasi tiap data terhadap meannya (rata-ratanya) Deviasi standar (s) adalah akar positif variansi Rumus:

Contoh: Terdapat data 8. 7, 10, 11, 4 xi x xi-x (xi-x)2 8 7 -1 1 10 2 7 -1 1 10 2 4 11 3 9 -4 16   30

Koefisien variansi % 25 . 34 100 8 2.74 = x KV Harga deviasi dalam bentuk persentase. Berguna untuk membandingkan deviasi dua kelompok data Rumus: % 25 . 34 100 8 2.74 = x KV

Kemencengan Harga yang menunjukkan seberapa jauhkah distribusi itu menyimpang dari simetrik. Apabila suatu distribusi itu simetrik, dan bermodus satu, maka harga rata-rata (mean), median dan modus berimpit (sama besar). Untuk distribusi yang tidak simetrik, harga-harga tengah itu tidak sama. Semakin menceng distribusinya, maka semakin besar jarak antara mean dan modus. Rumus: Km = rata-rata – modus/deviasi standar Untuk distribusi yang tidak terlalu menceng, rumus diatas dapat diganti dengan: Km = (3Xrata-rata – modus/deviasi standar)

Dari rumus diatas terlihat jelas bahwa untuk distribusi yang simetrik harga kemencenganya = 0. Untuk distribusi yang mempunyai mean lebih besar dari modus, harga kemencengannya positif, dan distribusinya dinamakan menceng positif (kekanan). Sebaliknya jika mean lebih kecil dari modus, harga kemencengannya negatif dan distribusinya dinamakan menceng negatif (kekiri) Km = 0 distribusi simetrik Km < 0 distribusi menceng kekiri Km > 0 distribusi menceng ke kanan

Ukuran Penyebaran Relatif Mengubah ukuran penyebaran menjadi persentase atau ukuran relatif Penggunaan ukuran relatif memberikan manfaat : Data mempunyai satuan pengukuran yang berbeda Data mempunyai satuan ukuran yang sama

Ukuran Penyebaran Relatif Koefisien range Koefisien deviasi rata-rata Koefisien deviasi standar

Koefisien Range Pengukuran penyebaran dengan menggunakan range secara relatif Rumusan : KR = ( (La – Lb) / (La + Lb) ) x 100 % La : Batas atas data atau kelas tertinggi Lb : Batas bawah data atau kelas terendah

Koefisien Deviasi Rata - Rata Ukuran penyebaran dengan menggunakan deviasi rata-rata relatif terhadap nilai rata-ratanya atau persentase dari deviasi rata-rata terhadap nilai rata-ratanya Rumus : KMD = [ MD / x ] x 100% MD = Deviasi rata - rata X = Nilai rata – rata data

Koefisien Standar Deviasi Ukuran penyebaran yang menggunakan standar deviasi relatif terhadap nilai rata-rata yang dinyatakan sebagai persentase Rumus KSD = [ s / x ] x 100 % S = Standar deviasi X = Nilai rata – rata data

Ukuran Keruncingan - Kurtosis Keruncingan disebut juga ketinggian kurva Pada distribusi frekuensi di bagi dalam tiga bagian : Leptokurtis = Sangat runcing Mesokurtis = Keruncingan sedang Platykurtis = Kurva datar

Koefisien Kurtosis Bentuk kurva keruncingan – kurtosis Mesokurtik 4 = 3 Leptokurtik 4 > 3 Platikurtik 4 < 3 Koefisien kurtosis (data tidak dikelompokan) 4 = Nilai data 1/n ∑(x - )4  4

Koefisien Kurtosis Koefisien kurtosis (data dikelompokan) 4 = 1/n ∑ f. (X - )4 4 Jumlah Frekuensi Nilai rata – rata hitung Standar deviasi Nilai tengah kelas

ALHAMDULILLAHIRABBIL’ALAMIN WASSALAAMU ‘ALAIKUM WARAKHMATULLAAHI WABAROKAATUH 20