BAB IX MATRIKS DAN DETERMINAN.

Slides:



Advertisements
Presentasi serupa
MATRIKS DAN DETERMINAN
Advertisements

Pengertian Tentang Matriks Operasi-Operasi Matriks
Matriks.
Selamat Datang Dalam Kuliah Terbuka Ini
ALJABAR LINIER & MATRIKS
II. MATRIKS UNTUK STATISTIKA
Konsep Vektor dan Matriks
DETERMINAN MATRIK Yulvi Zaika.
MATRIKS Oleh : Suci Pusporini ( ) Risky Noorwiyadi ( )
MATRIKS DEFINISI MATRIKS :
BAB I MATRIKS.
Pertemuan 25 Matriks.
By : Meiriyama Program Studi Teknik Informatika
BY : ERVI COFRIYANTI, S.Si
Pengertian, Notasi, dan Ordo Matriks
MATRIKS.
MATRIKS.
Determinan Pertemuan 2.
3. MATRIKS.
BAB 3 DETERMINAN.
MATRIKS.
DETERMINAN Route Gemilang routeterritory.wordpress.com.
3. MATRIKS.
Matriks Didalam matematika diskrit, matriks digunakan untuk merepresentasikan struktur diskrit Struktur diskrit yang direpresentasikan dengan matriks antara.
PERSAMAAN LINEAR MATRIK.
ALJABAR LINIER.
BAB 3 DETERMINAN.
Matakuliah : K0352/Matematika Bisnis
Modul XI Oleh: Doni Barata, S.Si.
PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK INFORMATIKA STMIK HANDAYANI MAKASSSAR MATRIKS Novita Dwi Maharani S, S.Si, M.Pd.
MATEMATIKA DISKRIT MATRIKS, RELASI DAN FUNGSI D e f n i
MATRIKS DEFINISI MATRIKS :
MATRIKS EGA GRADINI, M.SC.
Transfos Suatu Matriks
Chapter 4 Determinan Matriks.
Pertemuan 2 Alin 2016 Bilqis Determinan, Cramer bilqis.
Definisi Matriks Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan.
Widita Kurniasari, SE, ME Universitas Trunojoyo Madura
ALJABAR LINIER WEEK 2. MATRIKS
Operasi Matriks Pertemuan 24
JENIS-JENIS MATRIKS Lukman Harun, S.Pd.,M.Pd..
MATRIKS DEFINISI MATRIKS :
Matriks.
DETERMINAN DARI MATRIKS Pertemuan - 4
Aljabar Linear.
Matematika Informatika 1
Core Teknik Informatika Kode MK/SKS : TIF /2
MATRIKS.
Aljabar Linear.
Smk Tamansiswa 2 jakarta
Chapter 4 Invers Matriks.
Jenis Operasi dan Matriks Pertemuan 01
MATRIKS.
MATEMATIKA FISIKA I Deskripsi
Widita Kurniasari, SE, ME Universitas Trunojoyo
Widita Kurniasari, SE, ME Universitas Trunojoyo
Widita Kurniasari Universitas Trunojoyo
Aljabar Linier Oleh Ir. Dra. Wartini.
Widita Kurniasari, SE, ME Universitas Trunojoyo
Widita Kurniasari, SE Bahan Ajar di Universitas Trunojoyo
Widita Kurniasari, SE, ME Universitas Trunojoyo
MATRIKS.
Widita Kurniasari Universitas Trunojoyo
Widita Kurniasari Universitas Trunojoyo
Widita Kurniasari Universitas Trunojoyo Madura
Aljabar Linier TIF 206 Mohammad Nasucha, S.T., M.Sc.
Widita Kurniasari Universitas Trunojoyo
Widita Kurniasari Universitas Trunojoyo
Widita Kurniasari Universitas Trunojoyo
DETERMINAN 1.Pengertian Determinan 2.Perhitungan Determinan Matriks Bujur Sangkar 3.Sifat-sifat Determinan 4.Menghitung Determinan Menggunakan Sifat-Sifat.
Transcript presentasi:

BAB IX MATRIKS DAN DETERMINAN

9.1 Matriks Dalam kehidupan sehari-hari kita sering membuat hubungan antar dua atau beberapa besaran, seperti mata kuliah yang diikuti oleh mahasiswa pada suatu program studi tertentu atau nilai hasil semester mahasiswa seperti yang ditunjukkan pada contoh berikut. Mtk. Diskrit (M) Str. Data (S) Pemrogr. (P) Basis Dt. (B) Tek. Informatika 40 42 29 Sist. Informasi 45 35 30 Tek. Komputer 31 22 37 Mnj. Informatika Komp. Akuntasi 39 26 27

Dari bentuknya, matriks dapat didefinisikan sebagai susunan elemen-elemen sedemikian rupa sehingga membentuk baris dan kolom. Elemen-elemen tersebut diletakkan diantara dua buah kurung siku. Bentuk matriks dapat ditunjukkan sebagai berikut. Misal terdapat matriks A yang terdiri dari m baris dan n kolom, maka bentuk matriks tersebut adalah,

Ukuran suatu matriks ditunjukkan oleh jumlah baris m dan kolom n. Pada matriks diatas ukuran matriks A adalah m x n. Masing-masing elemen pada matriks disebut entri. Entri aij adalah elemen matriks yang berada pada baris ke i dan kolom ke j. Umumnya suatu matriks ditunjukkan dengan huruf kapital yang dicetak tebal. Selain cara penulisan diatas, matriks dapat juga ditulis sebagai A = [aij ]. Jika m sama dengan n , maka matriks disebut matriks bujur sangkar dan entri-entri aij dengan i sama dengan j disebut diagonal matriks.

9.2 Matriks Bentuk Khusus Jika kita identifikasi masing-masing entri dari suatu matriks, maka terdapat beberapa matriks yang dapat dikategorikan sebagai matriks berbentuk khusus yaitu, 9.2.1 Vektor Kolom Vektor kolom adalah matriks yang mempunyai m baris dan satu kolom. Berikut adalah contoh matriks 4 x 1 (4 baris dan 1 kolom). 12 40 32 25

9.2.2 Vektor Baris Vektor baris adalah matriks yang mempunyai satu baris dan n kolom. Contoh matriks 1 x 4 atau 1 baris dan 4 kolom adalah [ 4 2 5 1 ] 9.2.3 Matriks Persegi Matriks persegi adalah matriks yang mempunyai jumlah baris dan kolom yang sama. Berikut diberikan contoh matriks persegi yang berukuran 5 x 5 (5 baris dan 5 kolom).

9.2.4 Matriks Segitiga Matriks segitiga dapat dikelompokkan menjadi dua bagian, yaitu matriks segitiga atas dan segitiga bawah. Jika seluruh entri yang berada diatas diagonal matriks mempunyai nilai 0 dan setidak-tidaknya ada satu entri yang berada dibawah diagonal ≠ 0, maka matriks tersebut adalah matriks segitiga bawah atau untuk setiap i<j, aij = 0. Sedangkan matriks yang mempunyai entri dibawah diagonal = 0 dan setidak-tidaknya ada satu entri yang berada diatas diagonal ≠ 0, maka matriks tersebut adalah matriks segitiga atas atau untuk setiap i> j, aij = 0

9.2.5 Matriks Diagonal Jika seluruh entri diatas dan dibawah diagonal sama dengan 0 dan setidak-tidaknya ada satu entri pada diagonal ≠ 0, maka matriks tersebut adalah matriks diagonal atau untuk s etiap i ≠ j, aij=0.

9.2.6 Matriks Skalar Matriks skalar adalah matriks yang mempunyai nilai entri yang sama pada diagonal. Jika matriks diagonal adalah matriks D, maka d11 = d22 = d.. ..= dnn 9.2.7 Matriks Identitas Matriks identitas adalah matriks yang mempunyai entri-entri baik diatas maupun dibawah diagonal sama dengan nol dan entri pada diagonal sama dengan 1.

9.2.8 Matriks 0 Matriks 0 adalah matriks yang seluruh entrinya sama dengan 0. 9.2.9 Matriks Transpose Contoh 9.1 , maka AT = Jika A = 9.2.10 Matriks Simetri dan Skew-Simetri Jika sebuah matriks sama dengan transposenya (A = AT ) maka matriks tersebut adalah matriks simetri. Contoh 9.2 Jika A = , maka AT =

Karena A = AT, maka A adalah matriks simetri. Sedangkan matriks skew- simetri adalah matriks yang memenuhi –A = AT. Contoh 9.3 Misal A = ,maka AT = , –A = Karena –A = AT , maka A adalah matriks skew-simetri.

9.3 Operasi Aritmatika pada Matriks Operasi aritmatika pada matriks terdiri dari penjumlahan, perkalian skalar dengan matriks, perkalian matriks dengan matriks serta kombinasi linier beberapa matriks. 9.3.1 Penjumlahan Misal terdapat matriks A = [aij ] dan B = [bij] yang masing-masing berukuran m x n. Jumlah A dan B, ditulis A+B, adalah C = [cij], dengan [cij] = [aij] + [bij]. Perlu diingat, bahwa dua buah matriks hanya dapat dijumlahkan jika mempunyai orde yang sama. Contoh 9.4 B = Misal A =

Maka A + B = C 9.3.2 Perkalian Skalar dengan Matriks Jika terdapat sebuah skalar c dan matriks A = [aij], maka perkalian antara skalar c dengan matriks A adalah cA = [c.aij], atau dapat ditulis dalam bentuk: cA = c

Contoh 9.5 Jika A = maka 3A = 9.3.3 Perkalian Matriks dengan Matriks Perkalian dua buah matriks hanya dapat dilakukan jika jumlah kolom matriks pertama dan jumlah baris matriks kedua sama. Misal matriks A = [aij] berukuran m x n dan matriks B = [bij] berukuran n x p, maka perkalian antara matriks A matriks B, ditulis AB, adalah sebuah matriks C = [cij] yang berukuran m x p.

Nilai dari cij adalah, Contoh 9.6 A = B = Diketahui Jika terdapat matriks C = A.B, maka C =

9.3.4 Kombinasi linier matriks Jika A1, A2, … , Ap adalah matriks yang mempunyai ukuran Sama, dan k1, k2, … , kp adalah skalar, maka k1 A1 + k2 A2 + … + kp Ap disebut kombinasi linier dari A1, A2, … , Ap Contoh 9.7 Jika , A3 = A1 = A2 = tentukan A1 + 3A2 – 2A3 Penyelesaian

A1 + 3A2 –2A3 9.3.5 Sifat-sifat Operasi Matriks Jika a dan b adalah skalar dan A, B, dan C adalah matriks, maka berlaku:

i) A + B = B + A hukum komutatif penjumlahan ii) A + (B + C) = (A + B) + C hukum asosiatif penjumlahan iii) A(BC) = (AB)C hukum asosiatif perkalian iv) A(B ± C) = AB ± AC hukum distributif kiri v) (B ± C)A = BA ± CA huklum distributif kanan vi) a(B ± C) = aB ± aC vii) (a ± b)C = aC ± bC (ab)C = a(bC) ix) a(BC) = (aB)C = B(aC) x) (AT)T = A xi) (A + B)T = AT ± BT xii) (cA)T =cAT xiii) (AB)T = BT AT

9.4 Matriks yang Diperluas (Augmented matrix) Matriks yang diperluas adalah matriks yang berhubungan dengan penyajian sebuah sistem persamaan linier. Misal terdapat sistem persamaan linier, Dari sistem persamaan linier tersebut, dapat disajikan matriks koeffisien,

9.5 Matriks dalam bentuk Eselon Baris Suatu matriks dikatakan mempunyai bentuk eselon baris jika memenuhi: i) Setiap baris yang keseluruhan elemennya nol diletakkan pada bagian bawah matriks ii) Elemen pertama dari setiap baris yang bukan nol (disebut leading coefficient atau pivot ) harus terletak disebelah kanan leading coefficient pada baris sebelumnya.

Contoh 9.8 Matriks dalam bentuk eselon baris Contoh 9.9 Matriks berikut tidak/belum dalam bentuk eselon baris Matriks segitiga atas adalah matriks yang termasuk yang mempunyai bentuk eselon baris.

9.6 Matriks dalam bentuk Eselon Baris Tereduksi Suatu matriks dikatakan mempunyai bentuk eselon baris tereduksi jika: i) Matriks tersebut sudah dalam bentuk eselon baris ii) Elemen leading coefficient harus mempunyai nilai 1 (selanjutnya disebut leading 1) dan satu-satunya elemen matriks yang bukan 0 pada kolom yang bersangkutan. Perlu diketahui bahwa matriks satuan adalah bentuk khusus dari matriks eselon baris tereduksi Contoh 9.10 Suatu matriks yang belum dalam bentuk eselon baris dapat ditransformasikan kedalam bentuk matriks eselon tereduksi dengan cara melakukan operasi baris elementer terhadap matriks tersebut.

9.7 Operasi Baris Elementer Operasi yang dapat dilakukan terhadap baris dan kolom suatu matriks adalah: i) Perkalian sembarang baris dengan skalar ii) Penukaran posisi suatu baris dengan baris tertentu iii) Penjumlahan antara i) dan ii). Ketiga operasi diatas disebut Operasi Baris Elementer (OBE) Contoh penggunaan notasi yang digunakan pada operasi baris dan kolom: i) R3  2R3 artinya baris ketiga matriks diganti dengan 2 kali baris ke tiga ii) R1  R2 artinya baris pertama dan kedua saling dipertukarkan. iii) R2  R2 + 3R3 artinya baris kedua diganti dengan baris kedua ditambah dengan tiga kali baris ketiga

Contoh 9.11 Lakukan OBE terhadap matriks berikut, sehingga menjadi matriks eselon baris tereduksi. Penyelesian Elemen pivot 2 1 – 1 3 4 4 7 5 Elemen dieliminasi

Langkah pertama Ubah elemen pivot menjadi 1 dengan cara mengalikan baris pertama dengan 1/2. ½ R1 –5R1+R2 –4R1+R3 2R2

9.8 Determinan Determinan adalah besaran atau nilai yang berhubungan dengan matriks persegi. Jika determinan suatu matriks persegi tidak sama dengan nol maka matriks persegi tersebut mempunyai balikan (inverse). Sebaliknya, jika determinan suatu matriks persegi tidak sama dengan nol, maka matriks tersebut tidak mempunyai balikan.

Jika terdapat matriks , maka determinan dari matriks A adalah Contoh 9.12 Tentukan determinan dari Penyelesaian 9.8.1 Sifat-sifat determinan i) Setiap matriks dan transposenya mempunyai determinan yang sama atau det A = det AT

ii) Jika terdapat matriks A dan matriks B, maka berlaku det(AB)=det (A) det (B) iii) Determinan dari matriks segitiga adalah perkalian dari diagonalnya Jika matriks B adalah matriks yang didapat dari mempertukarkan dua buah baris matriks A, maka determinan matriks B berlawanan dengan determinan matriks A

v) Jika matriks dan c adalah konstanta, maka b) Jika seluruh elemen dari salah satu baris suatu matriks sama dengan nol, maka determinan matriks tersebut sama dengan nol.

9.8.2 Kofaktor Misal A = [aij] adalah matriks nxn, dan misalkan M adalah matriks (n-1)x(n-1) yang diperoleh dari A dengan menghapus baris ke i dan kolomn ke j pada matriks A. Determinan dari M disebut minor dari aij (selanjutnya ditulis Mij). Sedangkan cij adalah kofaktor aij dan didefinisikan sebagai, Contoh 9.9 Diketahui Tentukan minor dan kofaktor dari a11dan a13 Penyelesaian

9.8.3 Determinan dari matriks n x n Secara umum untuk menghitung determinan dari matriks orde n x n adalah sebagai berikut. Jika A adalah matriks persegi n x n, maka determinan dari matriks A adalah

Contoh 9.10 Tentukan determinan dari Penyelesaian Karena A adaah matriks 3 x 3, maka nilai i diambil antara 1, 2, atau 3. Kita tentukan i=1 Dari rumus 9.4a didapat, det A =

det A =(–4)(2)+(1)(9)+(5)(–6) = –8 + 9 – 30 = –29 Kerjakan ulang contoh 9.10 dengan menggunakan rumus 9.4b dengan nilai j = 2. Selain menggunakan rumus 9.4, menentukan determinan matriks orde 3 dapat juga menggunakan cara Sarrus. Jika terdapat matriks

–( ) –( ) –( ) +( ) +( ) +( ) Maka det A = A = a11a22a33 + a12a23a34 + a13a21a32 – a31a22a13 – a32a23a11– a33a21a12

9.9 Adjoin Matriks Jika terdapat matriks A = [aij], maka Contoh 9.11 , tentukan adjoin A Penyelesaian

9.10 Balikan Matriks (Inverse of a Matrix) Jika matriks A = [aij] adalah matriks persegi n x n, maka balikan (inverse) dari A dilambangkan dengan A-1 merupakan matriks n x n sehingga memenuhi 9.10.1 Menentukan balikan matriks dengan rumus

Salah satu cara untuk menentukan balikan matriks adalah dengan mencari adjoin dan determinan dari matriks yang dicari balikannya terlebih dahulu. Setelah itu gunakan rumus Contoh 9.12 , tentukan Penyelesaian

9.10.2 Balikan matriks dengan menggunakan eliminasi Gauss-Jordan Untuk menentukan balikan matriks A dengan eliminasi Gauss-Jordan berarti kita harus melakukan eliminasi matriks A menjadi bentuk eselon baris tereduksi. Misal A adalah matriks non-singular n x n. AB = I jika dan hanya jika B =A-1 Bukti AB = I  A-1 AB = A-1 I  IB = A-1  B = A-1 atau A|I  AB |B  I|A-1 Berarti, jika kita berhasil mengeliminasi A|I menjadi I|X, maka kita dapat memastikan bahwa X = A-1

Contoh 9.13 Dari contoh 9.12, tentukan A-1 dengan metode eliminasi Gauss-Jordan Penyelesaian R2 –2/3 R1 R3 –R1 R3 –6/7 R2

R1 + 2/3R2 R2 +4/7R3 R1–9/7R3