DETERMINAN Route Gemilang 5208100073 routeterritory.wordpress.com.

Slides:



Advertisements
Presentasi serupa
ALJABAR LINIER DAN MATRIKS
Advertisements

MATRIKS 1. Pengertian Matriks
Determinan Trihastuti Agustinah.
DETERMINAN.
Pertemuan II Determinan Matriks.
ALJABAR LINIER & MATRIKS
DETERMINAN 2.1. Definisi   DETERMINAN adalah suatu bilangan ril yang diperoleh dari suatu proses dengan aturan tertentu terhadap matriks bujur sangkar.
DETERMINAN MATRIK Yulvi Zaika.
MATRIKS DEFINISI MATRIKS :
Pertemuan 25 Matriks.
LANJUTAN MATRIKS Oleh : KELOMPOK 2 : - ERNAWATI EVI NOVIANTI AGISIANA RIANI AUGUSTIA RIFNA.
DETERMINAN DAN INVERSE MATRIKS.
BAB III DETERMINAN.
MATRIKS.
PERMUTASI Merupakan suatu himpunan bilangan bulat {1,2,…,n} yang disusun dalam suatu urutan tanpa penghilangan atau pengulangan. Contoh : {1,2,3} ada 6.
MATRIKS.
INVERS MATRIKS Pengertian Invers Matriks
Determinan Pertemuan 2.
DETERMINAN Fungsi Determinan
PERSAMAAN LINEAR DETERMINAN.
Determinan.
BAB 3 DETERMINAN.
MATRIKS.
PERSAMAAN LINEAR MATRIK.
Matematika Elektro 2005 Teknik Elektro Universitas Gadjah Mada
BAB 3 DETERMINAN.
DETERMINAN DARI MATRIKS Pertemuan
Matakuliah : K0352/Matematika Bisnis
PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK INFORMATIKA STMIK HANDAYANI MAKASSSAR MATRIKS Novita Dwi Maharani S, S.Si, M.Pd.
MATRIKS EGA GRADINI, M.SC.
Determinan Matriks Kania Evita Dewi.
DETERMINAN.
Chapter 4 Determinan Matriks.
PERTEMUAN 5 1. MATRIKS 2. METODE ELIMINASI GAUSS 3. METODE ITERASI GAUSS SEIDEL 4. METODE DEKOMPOSISI LU.
Pertemuan 2 Alin 2016 Bilqis Determinan, Cramer bilqis.
Definisi Matriks Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan.
ALJABAR LINEAR, VEKTOR & MATRIKS
DETERMINAN DARI MATRIKS Pertemuan - 3
Operasi Matriks Pertemuan 24
Determinan Matriks Kania Evita Dewi.
Determinan Matriks Ordo 3 × 3
Aljabar Linear Elementer
Determinan dan Invers Daniel Rudy Kristanto, S.Pd
Determinan.
NILAI EIGEN DAN VEKTOR EIGEN Definisi :
MATRIKS.
DETERMINAN Konsep determinan dan invers matrik.
DETERMINAN Ronny Susetyoko Matematika 1.
DETERMINAN Pengertian Determinan
DETERMINAN DARI MATRIKS Pertemuan - 4
Aljabar Linear Elementer
MATRIKS Matematika-2.
Pertemuan II Determinan Matriks.
MA-1223 Aljabar Linier INVERS MATRIKS.
DETERMINAN.
DETERMINAN MATRIKS.
OPERASI BARIS ELEMENTER
Widita Kurniasari Universitas Trunojoyo
Pertemuan 11 Matrik III dan Determinan
Aljabar Linear Elementer
Operasi Baris Elementer
Widita Kurniasari Universitas Trunojoyo
Widita Kurniasari Universitas Trunojoyo
Widita Kurniasari Universitas Trunojoyo Madura
DETERMINAN.
Widita Kurniasari Universitas Trunojoyo
Widita Kurniasari Universitas Trunojoyo
Widita Kurniasari Universitas Trunojoyo
DETERMINAN 1.Pengertian Determinan 2.Perhitungan Determinan Matriks Bujur Sangkar 3.Sifat-sifat Determinan 4.Menghitung Determinan Menggunakan Sifat-Sifat.
Determinan dan invers matriks Silabus Determinan dan inves matriks berordo 2x2 Determinan dan invers matriks ber ordo 3x3 Tujuan Pembelajaran Matematika.
Transcript presentasi:

DETERMINAN Route Gemilang 5208100073 routeterritory.wordpress.com

Definisi Hasil Elementer A -> hasil kali n buah unsur A tanpa ada pengambilan unsur dari baris / kolom yang sama. Asumsikan A adalah suatu matriks bujur sangkar, fungsi determinan, det(A) adalah jumlah semua hasil kali dasar bertanda dari A. Notasi : det(A) atau |A|

Cara Menentukan Determinan Matriks 1. Dengan Cara Sarrus 2. Dengan Cara OBE 3. Dengan Cara Minor dan Kofaktor

Cara Menentukan Determinan Matriks Dengan Cara Sarrus

Con’t... Contoh Soal :

Cara Menentukan Determinan Matriks Dengan Cara OBE Contoh Soal : Petunjuk : Gunakan OBE untuk mereduksi matriks menjadi matrik segitiga sehingga nilai determinan adalah hasil kali diagonal utama

Con’t... Penyelesaian :

Dengan Cara Minor dan Kofaktor Cara Menentukan Determinan Matriks Dengan Cara Minor dan Kofaktor Matematika 1

Con’t... Beda Kofaktor & Minor Kofaktor dan minor suatu elemen aij hanya berbeda tanda. Jika pangkatnya genap maka kij=mij, sebaliknya jika pangkatnya ganjil maka kij = -mij. Lebih mudahnya apakah kofaktor bertanda + atau – adalah menggunakan ’papan periksa’ sebagai berikut :

Sifat-Sifat Determinan 1. det(A) = 0 jika dalam suatu baris/kolom semua elemennya nol 2. det(A) = det(AT)

Sifat-Sifat Determinan 3). Nilai determinan menjadi k kali bila dalam satu baris/kolom dikalikan dengan k (suatu skalar). Dari soal sifat 2), baris 1 dikalikan dengan 5 menjadi :

Sifat-Sifat Determinan 4. det(A) = 0 jika 2 baris/kolom sebanding. 5. Nilai determinan berubah tanda jika dua baris/kolom ditukar tempatnya

Sifat-Sifat Determinan 6). Nilai determinan tidak berubah jika baris/kolom ke – i ditambah k kali baris/kolom ke – j. Dari soal sifat 5), baris 1 ditambah 3 kali baris 2 : 7). Elemen sebuah baris/kolom memuat 2 buah suku maka determinan tersebut dapat ditulis sebagai jumlah determinan.

Sifat-Sifat Lain Jika A dan B adalah matriks bujur sangkar dengan ukuran yang sama, maka det(AB) = det(A) det(B). Suatu matriks bujur sangkar ada inversnya jika det(A) 0. Jika A dapat diinverskan, maka :

Manfaat penyelesaian sistem persamaan linier menghitung matriks invers menentukan karakteristik suatu sistem linier

Terima Kasih