Ukuran Pemusatan & Penyebaran

Slides:



Advertisements
Presentasi serupa
UKURAN PEMUSATAN DAN UKURAN LETAK
Advertisements

(UKURAN PEMUSATAN DAN UKURAN PENYEBARAN)
UKURAN PEMUSATAN DAN UKURAN LETAK
BAB VI UKURAN VARIASI ATAU DISPERSI (Pengukuran Dispersi) (Pertemuan ke-8) Oleh: Andri Wijaya, S.Pd., S.Psi., M.T.I. Program Studi Sistem Informasi Sekolah.
BAB 3 UKURAN PEMUSATAN.

Pertemuan 5: UKURAN PENYEBARAN DATA DAN KEMIRINGAN DIAGRAM
UKURAN PEMUSATAN Rata-rata (average) : mempunyai kecenderungan memusat
UKURAN PEMUSATAN Rata-rata (average) : B A B V
BAB III UKURAN PEMUSATAN
UKURAN PEMUSATAN DAN LETAK DATA
Sesi-2: DISTRIBUSI FREKUENSI
STATISTIK DESKRIPTIF Pengumpulan data, pengorganisasian, penyajian data Distribusi frekuensi Ukuran pemusatan Ukuran penyebaran Skewness, kurtosis.
UKURAN PEMUSATAN.
UKURAN PEMUSATAN.
BAB 3 UKURAN PEMUSATAN.
UKURAN PEMUSATAN Merupakan nilai tunggal yang mewakili semua data atau kumpulan pengamatan dimana nilai tersebut menunjukkan pusat data. Yang termasuk.
NURRATRI KURNIA SARI, M.Pd
UKURAN NILAI SENTRAL&UKURAN PENYEBARAN
UKURAN VARIASI ATAU DISPERSI (Pengukuran Dispersi)
Ukuran Pemusatan (Central Tendency)
UKURAN PENYEBARAN.
BAB 5 UKURAN NILAI PUSAT.
BAB 3 UKURAN PEMUSATAN.
(UKURAN PEMUSATAN DAN UKURAN PENYEBARAN)
UKURAN NILAI SENTRAL&UKURAN PENYEBARAN
(UKURAN PEMUSATAN DAN UKURAN PENYEBARAN)
(UKURAN PEMUSATAN DAN UKURAN PENYEBARAN)
Ukuran Pemusatan - Data Tunggal
Ukuran Pemusatan (1).
BAB 3 UKURAN PEMUSATAN.
UKURAN PEMUSATAN STATISTIK DESKRIPTIF
UKURAN PEMUSATAN Rata-rata (average) : B A B V
BAB 3 UKURAN PEMUSATAN.
UKURAN PEMUSATAN Rata-rata (average) : B A B 2
UKURAN NILAI SENTRAL&UKURAN PENYEBARAN
PPS 503 TEKNIK ANALISA DATA PERTEMUAN KE DUA
BAB 4 UKURAN PENYEBARAN.
UKURAN PENYEBARAN Ukuran Penyebaran
NURRATRI KURNIA SARI, M.Pd
BAB 3 UKURAN PEMUSATAN.
Ukuran Pemusatan - Data Tunggal
UKURAN PEMUSATAN Rata-rata (average) : B A B V
Ukuran Pemusatan Data Choirudin, M.Pd
BAB 4 UKURAN PENYEBARAN.
(UKURAN PEMUSATAN DAN UKURAN PENYEBARAN)
Ukuran Pemusatan Data Choirudin, M.Pd
BAB 3 UKURAN PEMUSATAN.
(UKURAN PEMUSATAN DAN UKURAN PENYEBARAN)
CHAPTER 1 DESKRIPSI DATA
CHAPTER 1 DESKRIPSI DATA
UKURAN PEMUSATAN Rata-rata (average) :
UKURAN PENYEBARAN.
UKURAN PEMUSATAN REZA FAHMI, MA.
BAB 3 UKURAN PEMUSATAN.
UKURAN PENYEBARAN.
BAB 4 UKURAN PENYEBARAN.
STATISTIK DESKRIPTIF.
BAB 3 UKURAN PEMUSATAN.
Pengantar statistika sosial
BAB 4 UKURAN PENYEBARAN.
UKURAN PEMUSATAN Rata-rata (average) : B A B V
BAB 3 UKURAN PEMUSATAN.
1 UKURAN PENYEBARAN. 2 PENGGUNAAN UKURAN PENYEBARAN Rata-rata bunga bank 11,43% per tahun, namun kisaran bunga antar bank dari 7,5% - 12,75% Rata-rata.
1 STATISTIK DESKRIPTIF. 2 DISTRIBUSI FREKUENSI Definisi: Adalah pengelompokan data ke dalam beberapa kategori yang menunjukkan banyaknya data dalam setiap.
DESKRIPSI DATA Pertemuan 3.
OLEH : SITTI HAWA, ST, MPW.  Ukuran pemusatan atau disebut rata – rata adalah menunjukan dimana suatu data memusat atau suatu kumpulan pengamatan memusat.
Rata-rata bunga bank 11,43% per tahun, namun kisaran bunga antar bank dari 7,5% - 12,75% Rata-rata inflasi Indonesia sebesar 18,2% dengan kisaran antara.
Ukuran Pemusatan - Data Tunggal
Transcript presentasi:

Ukuran Pemusatan & Penyebaran By Luh Putu Suciati Jember, 9 Maret 2015

Ukuran Pemusatan: Data  kecenderungan terpusat di sekitar suatu nilai. Ukuran pemusatan  ukuran ringkas yang menggambarkan karakteristik umum data tersebut. Ukuran pemusatan Nilai tunggal yang mewakili suatu kumpulan data dan menunjukkan karakteristik dari data. Ukuran pemusatan menunjukkan pusat dari nilai data. Rata-rata hitung (mean) diperoleh dengan menjumlahkan seluruh nilai data dan membagi dengan jumlah data. Rata-rata hitung dibedakan antara populasi dan sampel. Ukuran yang mewakili populasi disebut parameter, sedang untuk sampel disebut statistik. Rata-rata Hitung Populasi Rata-rata Hitung Sampel

RATA-RATA HITUNG TERTIMBANG Definisi: Rata-rata dengan bobot atau kepentingan dari setiap data berbeda. Besar dan kecilnya bobot tergantung pada alasan ekonomi dan teknisnya. Rumus: Xw = (w1X1 + w2X2 + … + wnXn)/(w1 + w2 + … +wn)

RATA-RATA HITUNG DATA BERKELOMPOK Data berkelompok adalah data yang sudah dibuat distribusi frekuensinya. Rumus nilai tengah =  f. X/n Interval Nilai Tengah (X) Jumlah Frekuensi (f) f.X 160-303 231,5 2 463,0 304-447 375,5 5 1.877,5 448-591 519,5 9 4.675,5 592-735 663,5 3 1.990,5 736-878 807,0 1 807,0 Jumlah n = 20  f  = 9.813,5 Nilai Rata-rata ( fX/n) 490,7

MEDIAN Definisi: Nilai yang letaknya berada di tengah data dimana data tersebut sudah diurutkan dari terkecil sampai terbesar atau sebaliknya. Median Data tidak Berkelompok: (a) Letak median = (n+1)/2, (b) Data ganjil, median terletak di tengah, (c) Median untuk data genap adalah rata-rata dari dua data yang terletak di tengah. Rumus Median Data Berkelompok:

Modus (data tidak terkelompok) : nilai yang paling sering muncul atau yang frekuensinya terbesar. Untuk data terkelompok modus dihitung dengan Rumus Modus Data Berkelompok: Mo = L + (d1/(d1+d2)) x i dengan Li = batas nyata kelas dari kelas modus (kelas berfrekuensi terbesar), d1 = selisih frekuensi kelas modus dengan kelas sebelumnya, d2 = selisih frekuensi kelas modus dengan kelas sesudahnya, I = lebar interval kelas modus.

HUBUNGAN RATA-RATA-MEDIAN-MODUS Nilai ukuran pemusatan yaitu rata-rata hitung (X), Median (Md) dan Modus (Mo) mempunyai hubungan dengan bentuk kurva distribusi frekuensinya. Apabila X= Md= Mo maka kurva simitris, X > Md, Mo maka kurva condong ke kanan dan X < Md, Mo maka kurva condong ke kiri.

UKURAN LETAK Ukuran letak adalah ukuran pemusatan yang menunjukkan letak data dalam suatu data yang sudah terurutkan. Ukuran letak terdiri dari kuartil, desil dan persentil. Kuartil adalah ukuran letak yang membagi 4 bagian yang sama. K1 sampai 25% data, K2 sampai 50% dan K3 sampai 75%. Letak kuartil untuk data tidak berkelompok adalah [i(n + 1)]/4 dan data berkelompok adalah (in)/4, dimana nilai i adalah 1,2 dan 3. Rumus letak kuartil: DATA TIDAK BERKELOMPOK DATA BERKELOMPOK K1 = [1(n + 1)]/4 1n/4 K2 = [2(n + 1)]/4 2n/4 K3 = [3(n + 1)]/4 3n/4

UKURAN LETAK: DESIL Definisi: Desil adalah ukuran letak yang membagi 10 bagian yang sama. D1 sebesar 10% D2 sampai 20% D9 sampai 90% Rumus Letak Desil: DATA TIDAK BERKELOMPOK DATA BERKELOMPOK D1 = [1(n+1)]/10 1n/10 D2 = [2(n+1)]/10 2n/10 …. D9 = [9(n+1)]/10 9n/10

GRAFIK LETAK DESIL

UKURAN LETAK: PERSENTIL Definisi: Ukuran letak yang membagi 100 bagian yang sama. P1 sebesar 1%, P2 sampai 2% P99 sampai 99% Rumus Letak Persentil: DATA TIDAK BERKELOMPOK DATA BERKELOMPOK P1 = [1(n+1)]/100 1n/100 P2 = [2(n+1)]/100 2n/100 …. P99 = [99(n+1)]/100 99n/100

CONTOH UKURAN LETAK PERSENTIL

Latihan soal PT Global Jaya mempunyai francaise mie ayam goreng di sepuluh kota di Pulau Jawa. Pendapatan bersih dalam puluhan juta dari setiap cabang pada tahun 2002 adalah sebagai berikut: Cabang Jutaan Rupiah Jakarta 8 Serang 1 Tangerang 5 Malang 4 Semarang Jogyakarta Surabaya 9 Bandung Jember 2 Solo Hitunglah nilai rata-rata hitung/mean Hitunglah median dan modus Hitunglah letak kuartil 2 dan persentil 45

Interval Omset Penjualan Latihan soal PT Abadi Jaya melakukan melakukan pengkategorian cabang perusahaan berdasarkan omset penjualan (dalam jutaan) adalah sebagai berikut: Interval Omset Penjualan Jumlah Perusahaan 200–220 7 220–240 9 240–260 11 260–280 18 280–300 12 300–320 5 Hitunglah rata-rata hitung, median, dan modus dari data di atas! Bagaimana hubungan antara nilai ukuran pemusatan?

UKURAN PENYEBARAN Ukuran penyebaran adalah suatu ukuran baik parameter maupun statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata2 hitungnya Manfaat ukuran persebaran : 1. membantu mengetahui sejauh mana suatu nilai menyebar dari nilai tengahnya, semakin kecil semakin besar. membuat penilai seberapa baik suatu nilai rata-rata menggambarkan data. mengetahui seberapa jauh penyebaran data sehingga langkah-langkah untuk mengendalikan variasi dapat dilakukan. PENGGUNAAN UKURAN PENYEBARAN Rata-rata bunga bank 11,43% per tahun, namun kisaran bunga antar bank dari 7,5% - 12,75% Rata-rata inflasi Indonesia 1995-2001 sebesar 18,2% dengan kisaran antara 6% - 78% Harga rata-rata saham Rp 470 per lembar, namun kisaran saham sangat besar dari Rp 50 - Rp 62.500 per lembar

RANGE/Jangkauan/kisaran Definisi: Range adalah perbedaan antara nilai terbesar dengan nilai terkecil. Range hanya dipengaruhi oleh dua data ekstrim, dan kurang memperhatikan peran data yang lain. Contoh:

DEVIASI RATA-RATA/Simpangan mutlak rata2 Deviasi rata-rata. Deviasi rata-rata adalah rata-rata hitung nilai absolut deviasi atau selisih dari rata-rata hitungnya. ukuran penyebaran yang meninjau besarnya penyimpangan setiap nilai data terhadap nilai rata-rata. Rumus deviasi rata-rata: Rumus : MD = (|X – X|)/n

VARIANS Definisi: Rata-rata hitung dari deviasi kuadrat setiap data terhadap rata-rata hitungnya. Rumus: 2 = (X – )2/n

Standar deviasi/ simpangan baku Definisi: Akar kuadrat dari varians dan menunjukkan standar penyimpangan data terhadap nilai rata-ratanya. ukuran penyebaran yang paling sering digunakan Rumus:  =   ( X - )2 N Contoh: Jika varians = 44,47, maka standar deviasinya adalah:.................

Pendidikan, rekreasi, dan olah raga 248 Berikut adalah data indeks harga konsumen gabungan di 43 kota di Indonesia, carilah standar deviasinya No Kelompok IHK (X) X- u (X- u)2 1 Bahan pangan 317 (317-274)=43 1849 2 Makanan jadi 304 30 3 Perumahan 235 -39 4 Sandang 285 5 Kesehatan 277 6 Pendidikan, rekreasi, dan olah raga 248 7 Transpor, dan komunikasi 255 jumlah 1921 Rata-rata 274