Definisi Persamaan Linear

Slides:



Advertisements
Presentasi serupa
WINDA APRILIA AZIZAH ( ) Pendidikan Matematika
Advertisements

Program Linier Nama : Asril Putra S.Pd
PENYELESAIAN SISTEM PERSAMAAN LINEAR DUA VARIABEL DENGAN MENGGUNAKAN METODE SUBSITUSI 5 By matematika 2011 d.
SISTEM PERSAMAAN LINEAR DUA VARIABEL (SPLDV)
Pengenalan Konsep Aljabar Linear
1c YOUR NAME Fungsi Linear Yeni Puspita, SE., ME.
Sistem Persamaan Linear Dua Variabel (SPLDV)
SISTEM PERSAMAAN LINIER
MATEMATIKA BISNIS PERTEMUAN kedua Hani Hatimatunnisani, S. Si
KONSEP DASAR ALJABAR LINEAR
Pertemuan 4 Penyelesaian Persamaan Linear
PERSAMAAN & FUNGSI KUADRAT.
BAB I SISTEM PERSAMAAN LINIER
Aljabar Vektor (Perkalian vektor)
Matrik Lanjut.
Persamaan Linear Dua Variabel Di susun oleh : Dede yusuf Fikri fadhilah Yogi setiawan Firda maulani rifa.
SETIAMARGA DELLA HANISTA
ALJABAR LINIER WEEK 1. PENDAHULUAN
MATEMATIKA BISNIS Sri Nurmi Lubis, S. Si
Sistem Persamaan Linier Dua Variabel ( SPLDV
ICT DALAM PEMBELAJARAN MATEMATIKA
Pendidikan Matematika Veny Triyana Andika Sari, M.Pd.
BAB 5: Sistem Persamaan Linier (SPL)
Pertemuan 7 Penyelesaian Persamaan Linear (Metode Gauss Jordan)
SISTEM PERSAMAAN LINIER
PERKALIAN VEKTOR LANJUT
BAB I SISTEM PERSAMAAN LINIER
LATIHAN SK dan KD CONTOH SOAL PEMBAHASAN
SISTEM PERSAMAAN LINEAR
Persamaan Linear Persamaan linear adalah persamaan dimana peubahnya tidak memuat eksponensial, trigonometri (seperti sin, cos, dll.), perkalian, pembagian.
PERSAMAAN DAN PERTIDAKSAMAAN
PERTIDAKSAMAAN.
BAB 6 PERTIDAKSAMAAN.
Penyelesaian Persamaan Linear (Metode Gauss)
Persamaan Linear Dua Variabel
SISTEM PERSAMAAN LINEAR
Matematika SMA Kelas X Semester 1 Oleh : Ndaruworo
PERSAMAAN LINEAR.
04 SESI 4 MATEMATIKA BISNIS Viciwati STl MSi.
Sistem Persamaan Aljabar Linear
Pertemuan 5 Penyelesaian Persamaan Linear (Metode Gauss)
Pertemuan 8 MATRIK.
Lidya Citra Divantari PMTK 5 C
Penyelesaian Persamaan Linear (Metode Gauss)
Sistem Persamaan Aljabar Linear
Pertemuan 2 Aljabar Vektor (Perkalian vektor)
Perpangkatan dan Bentuk Akar
PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT
SISTEM PERSAMAAN LINEAR DAN KUADRAT
PERTIDAKSAMAAN OLEH Ganda satria NPM :
BAB VII PERSAMAAN DIFFRENSIAL SIMULTAN
Pertemuan 6 Penyelesaian Persamaan Linear (Metode Gauss) - 2
Pertemuan 1 Pengenalan Konsep Aljabar Linear
Fungsi Penerapan fungsi dalam bidang pertanian merupakan bagian yang sangat penting untuk dipelajari, karena model-model dalam matematika biasa disajikan.
UNIVERSITAS TRUNOJOYO
P O L I N O M I A L (SUKU BANYAK) Choirudin, M.Pd.
Pertemuan 7 Penyelesaian Persamaan Linear (Metode Gauss Jordan)
Penyelesaian Persamaan Linear (Metode Gauss)
Pertidaksamaan Linier
Assalamu'alaikum Wr.Wb.
Pertemuan 7 Penyelesaian Persamaan Linear (Metode Gauss Jordan)
A. Sistem Persamaan Linier dan Kuadrat
by Eni Sumarminingsih, SSi, MM
Pertemuan 12 Determinan.
Peta Konsep. Peta Konsep A. Sistem Persamaan Linier dan Kuadrat.
PERKALIAN VEKTOR LANJUT
PERSAMAAN LINIER DUA VARIABEL.
Pertidaksamaan Linear
Oleh NATALIA PAKADANG ( ). SISTEM PERSAMAAN LINEAR DUA VARIABEL Bentuk umum : dimana : a1, a2, b1, b2, c1, c2 adalah bilangan riil. a dan b ≠0.
SISTEM PERSAMAAN LINEAR DUA VARIABEL (SPLDV). SISTEM PERSAMAAN LINEAR Persamaan linear satu variabel adalah kalimat terbuka yang menyatakan hubungan sama.
Transcript presentasi:

Definisi Persamaan Linear Pertemuan 5 Definisi Persamaan Linear

TOPIK BAHASAN Pengantar Sistem Persamaan Linear Persamaan Linear Sistem Linear Penyelesaian persamaan linear (umum) Metode Eliminasi - Metode Substitusi -

Pengantar Sistem Persamaan Linear

Pendahuluan Kajian sistem persamaan linear dan penyelesaiannya, merupakan topik utama dalam aljabar linear. Bagian ini akan dibahas beberapa terminologi dasar dan mendiskusikan metode penyelesaian umum dari persamaan linear tersebut Akan dibahas pula mengenai kelemahan dan keunggulan sistem penyelesaian secara umum tersebut

Persamaan Linear Sebuah garis dalam bidang xy dapat disajikan secara aljabar dalam bentuk : a1 x + a2 y = b Secara umum suatu persamaan linear dalam n peubah adalah : a1 x1 + a2 x2 + a3 x3 + ……. + an xn dengan a1,a2,a3,….,an dan b konstanta real. Contoh: x + 3y = 7 x1-2x2-3x3+x4=7 x1 + x2 + …. + xn = 1

Penyelesaian persamaan Linear Dapat diselesaikan dengan menggunakan model permisalan Contoh : 4x-2y=1 dapat diselesaikan dengan menetapkan sembarang nilai x dan diperoleh nilai y, misal : x = 2 ; y = 7/2 x1 – 4 x2 + 7 x3 = 5 dapat diselesaikan dengan menetapkan nilai sembarang untuk 2 peubah terserah, sehingga diperoleh nilai peubah yang lain misal : x1 = 2 ; x2 = 1 ; x3 = 1

Pengertian sistem linear Himpunan terhingga persamaan linear dalam peubah x1, x2, x3, … , xn disebut sistem linear. Sederet angka s1, s2, s3, …, sn disebut suatu penyelesaian sistem tersebut. Misal sistem linear : 4 x1 – x2 + 3 x3 = -1 3 x1 + x2 + 9 x3 = -4 memiliki penyelesaian : x1 = 1 ; x2 = 2 ; x3 = -1 karena nilai tersebut memenuhi kedua persamaan linear tersebut

Penyelesaian Persamaan Linear

Sebuah persamaan dengan sebuah variabel yang tidak diketahui

Metode Substitusi Selesaikan sistem persamaan linier berikut: 3x – 2y =7 (1) 2x + 4y =10 (2) Misalkan variabel x yang dipilih pada persamaan (2), maka akan menjadi 2x + 4y = 10  2x = 10 – 4y x = 5 - 2y Kemudian substitusikan x ke dalam persamaan yang lain yaitu (1)

x = 5 - 2y 3(5 - 2y) – 2y =7  15 -6y -2y = 7 -8y = -8 y = 1 Substitusikan y = 1 ke dalam salah satu persamaan awal misal persamaan (2) x = 5 – 2(1) = 3 Jadi himpunan penyelesaian yang memenuhi kedua persamaan adalah (3,1)

Metode Eliminasi Adalah metode penyelesaian persamaan linear dengan cara menghilangkan salah satu variabel. Langkah-langkah Perhatikan koefisien x (atau y) Jika koefisiennya sama: Lakukan operasi pengurangan untuk tanda yang sama Lakukan operasi penjumlahan untuk tanda yang berbeda Jika koefisiennya berbeda, samakan koefisiennya dengan cara mengalikan persamaan-persamaan dengan konstanta yang sesuai, lalu lakukan seperti langkah a) Lakukan kembali langkah 1 untuk mengeliminasi variabel lainnya.

Contoh Metode Eliminasi Carilah nilai – nilai dari variabel X dan Y yang dapat memenuhi kedua persamaan berikut: 3x – 2y = 7 (3) 2x + 4y = 10 (4) Penyelesaian Misal variabel yang akan dieliminasi adalah y, maka pers (3) dikalikan 2 dan pers (4) dikalikan 1. 3x – 2y = 7 dikalikan 2  6x – 4y = 14 2x + 4y = 10 dikalikan 1  2x + 4y = 10 + 8x + 0 = 24 x = 3

Substitusikan variabel x = 3 ke dalam salah satu persamaan awal, misal pers (3) 3x – 2y = 7 3(3) – 2y = 7 -2y = 7 – 9 = -2 y = 1 Jadi himpunan penyelesaian dari sistem persamaan tersebut adalah (3,1)

Sistem dengan dua persamaan dengan dua variabel yang tidak diketahui Ada banyak cara yang digunakan untuk menyelesaikan persamaan tersebut. Berikut adalah satu cara yang umum digunakan (eliminasi): Langkah 1:

Langkah 2 : Langkah 3 :

Langkah 4 : setelah penyelesaian didapatkan, selanjutnya dapat dilihat kebenaran dari penyelesaian yang telah didapat dengan mensubstitusikan nilai x1 dan x2 ke dalam persamaan.

Intepretasi Aljabar Intepretasi aljabar ekivalen dengan metode substitusi Langkah-langkah penyelesaian untuk kasus soal yang sama :

Selesaikan persamaan berikut : Sebuah sistem dengan tiga persamaan dengan tiga variabel yang tidak diketahui Prosedur yang sama dengan dua peubah juga dapat digunakan untuk menyelesaikan sistem tiga persamaan linear 3 peubah, yaitu dengan metode eliminasi,dan substitusi. Selesaikan persamaan berikut :

Metode elimminasi

Interpretasi Aljabar

Keunggulan dan Kelemahan Metode eliminasi, dan substitusi secara umum adalah metode yang mudah untuk digunakan dalam penyelesaian masalah sistem persamaan linear Tetapi sistem tersebut memiliki kelemahan, hal ini terjadi apabila ingin dicari penyelesaian dalam sistem persamaan dengan n variabel dengan n persamaan yang tidak diketahui sama sekali nilai peubahnya

Summary Persamaan Linear tidak melibatkan hasil kali atau akar peubah. Semua peubah hanya muncul sekali dengan pangkat satu, dan tidak muncul sebagai sebuah fungsi dari trigonometri, logaritma maupun eksponensial Tidak semua sistem persamaan linear mempunyai penyelesaian Metode eliminasi dan substitusi tidak cocok digunakan untuk n persamaan dengan n peubah

Daftar Pustaka Advanced Engineering Mathematic Anton, Howard. Dasar-dasar Aljabar Linear Jilid 1 Edisi 7. 2000. Penerbit Interaksara. Jakarta Anton, Howard. Dasar-dasar Aljabar Linear Jilid 2 Edisi 7. 2000. Penerbit Interaksara. Jakarta Noor Ifada. Bahan Kuliah Aljabar Linear