Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Teknik Pengintegralan

Presentasi serupa


Presentasi berjudul: "Teknik Pengintegralan"— Transcript presentasi:

1 Teknik Pengintegralan

2 Pendahuluan Sering dijumpai bahwa fungsi-fungsi yang akan diintegralkan bukan merupakan bentuk baku (rumus umum integrasi), sehingga tidak dapat langsung diintegralkan. Fungsi tersebut harus dibawa ke bentuk baku, dengan cara: Teknik substitusi Teknik pengintegralan parsial Teknik Substitusi Mengubah ke bentuk baku Mengubah-ubah integran Beberapa integral trigonometri

3 Basic Integration Formulas

4 A.1. Mengubah ke bentuk baku
Untuk menentukan  f(x) dx, dapat mensubstitusikan u = g(x), dengan g adalah fungsi yang dapat diintegralkan. Apabila substitusi mengubah f(x) dx menjadi h(u) du dan apabila H antiturunan h, maka:  f(x) dx =  h(u) du = H(u) + c = H(g(x)) + c Contoh 3 Tentukan Bentuk baku yang mendekati adalah  eudu dengan mengandaikan u = 1/x , maka du = sehingga : = - 6 eu + c = = -6

5 Contoh 4 Ingat bentuk baku u = x4 + 11, maka

6 Contoh

7 A.2. Mengubah ke bentuk integran
Sebelum melakukan substitusi, sering kali dibutuhkan menulis integran ke dalam bentuk yang lebih cocok. Contoh 5

8 A.3. Bentuk Integral Trigonometri
Apabila kita menggunakan metode penggantian dan disertai dengan pemakaian kesamaan trigonometri yang tepat, maka kita dapat mengintegralkan banyak bentuk trigonometri. Tiga jenis integral yang sering dijumpai :  sin n x dx dan  cos n x dx  sin m x cos n x dx  sin mx cos nx dx,  sin mx sin nx dx,  cos mx cos nx dx i) Jenis  sin n x dx dan  cos n x dx Untuk n = ganjil, digunakan kesamaan : sin2 x + cos2 x =1 Contoh 6

9 Untuk n = genap, digunakan kesamaan :
sin2x = ½ (1 - cos 2x) cos2 x = ½ (1 + cos 2x) Contoh 7.  sin 2 x dx =  ½ (1 - cos 2x) dx = ½  dx – ¼  cos 2x (2) dx = ½  dx – ¼  cos 2x d(2x) = ½ x – ¼ sin 2x + c ii) Jenis  sin m x cos n x dx Untuk m atau n ganjil sedang eksponen lain merupakan bilangan sembarang, maka dikeluarkan sin x atau cos x dan digunakan kesamaan : sin2 x + cos2 x =1 Contoh 8.

10 Untuk m dan n genap maka digunakan kesamaan :
sin2x = ½ (1 - cos 2x) cos2 x = ½ (1 + cos 2x) Contoh 9.

11 iii) Jenis  sin mx cos nx dx,  sin mx sin nx dx,  cos mx cos nx dx
Integral jenis ini banyak digunakan dalam teori arus bolak-balik, teori perpindahan panas dan teori-teori yang menggunakan deret Fourier. Untuk menyelesaikan integral jenis ini digunakan kesamaan sebagai berikut. sin mx cos nx = ½ [sin (m+n) x+ sin (m - n) x] sin mx sin nx = - ½ [cos (m+n) x - cos (m - n) x] cos mx cos nx = ½ [cos (m+n) x+ cos (m - n) x] Contoh 10.

12 B. Pengintegralan Parsial
Apabila pengintegralan dengan metode penggantian tidak berhasil, dengan menerapkan metode penggunaan ganda, yang lebih dikenal dengan pengintegralan parsial. Metode ini didasarkan pada pengintegralan rumus turunan hasil kali dua fungsi. Andaikan u dan v adalah fumgsi x yang dapat dideferensiasikan. Maka d(uv) = v du + u dv uv =  v du +  u dv  u dv = uv -  v du Dua aturan umum yang harus diikuti adalah : bagian yang dipilih sebagai dv harus segera dapat diintegrasikan  v du tidak boleh lebih sulit daripada  u dv

13  x cos x dx = x sin x -  sin x dx = x sin x + cos x + c
Contoh 11 : Tentukan  x cos x dx Penyelesaian : Jika diambil u = x dv = cos x dx du = dx v = sin x Maka :  x cos x dx = x sin x -  sin x dx = x sin x + cos x + c

14 Pengintegralan Parsial Berulang
Sering kali di dalam penerapan teknik ini dijumpai pengintegralan parsial yang harus dilakukan beberapa kali. Contoh 12 Hitunglah  x2 sin x dx. Penyelesaian : Andaikan u = x2 dv = sin x dx du = 2x v = - cos x Maka :  x2 sin x dx = - x2 cos x  x cos x dx  x2 sin x dx = - x2 cos x + 2(x sin x + cos x + C ) = - x2 cos x + 2x sin x + 2 cos x + K

15 Contoh 13 Tentukan  ex sin x dx. Penyelesaian :
Andaikan u = ex dan dv = sin x dx du = ex dx v = - cos x Sehingga  ex sin x dx = -ex cos x +  ex cos x dx Tampaknya tidak ada perbaikan. Akan tetapi dengan sekali lagi menerapkan pengintegralan parsial pada integral kedua, yaitu dengan mengandaikan : u = ex dan dv = cos x dx du = ex dx v = sin x Maka :  ex cos x dx = ex sin x -  ex sin x dx Apabila hasil ini kita substitusikan ke dalam hasil pertama, maka diperoleh:  ex sin x dx = - ex cos x + ex sin x -  ex sin x dx Dengan mengubah urutan suku terakhir ke sebelah kiri integral dan mengumpulkan suku-sukunya, kita peroleh 2  ex sin x dx = ex (sin x - cos x) + C Sehingga akhirnya :  ex sin x dx = ½ ex (sin x - cos x) + K

16 Pengintegralan Tabular
Jika pengulangan integral parsial dilakukan berkali-kali, maka bisa diperingkas dengan integral tabular Ilustrasi dari integral ini adalah

17

18 Teknik Integral Fungsi Rasional
Menurut definisi, suatu fungsi rasional adalah hasil bagi dua fungsi suku banyak (polinom). Contoh : Untuk pengintegralan yang dicari adalah membuat bentuk fungsi rasional seperti sisi kiri dari fungsi rasional di sisi kanan.

19 A. Faktor linear yang berlainan
Tentukan integral Solusi : x2-x-6 = (x-3)(x+2) Sehingga penjabaran pecahannnya Selanjutnya dicari nilai A dan B : 3x-1 = A(x-3) + B(x+2) 3x-1 = (A+B) x + (-3A+2B) A + B = 3 -3A + 2B = -1 A = 7/5 dan B =8/5 = Jadi = 7/5 ln |x + 2 | + 8/5 ln | x - 3 | + C

20 B. Faktor linear yang berulang
Tentukan integral Penjabaran menjadi pecahan parsial adalah Nilai A dan B dapat dicari, setelah penyebut-penyebutnya dihilangkan diperoleh x = A(x-3) + B A = 1 dan B = 3 = = ln | x-3 | -

21 C. Faktor kuadrat yang berulang
Tentukan integral Penjabaran : Kesamaan : dan E = 0

22 Sehingga :

23 Subsitusi trigonometri
Untuk mensubtitusi bentuk dan dengan dan

24


Download ppt "Teknik Pengintegralan"

Presentasi serupa


Iklan oleh Google