Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

1 PENGUJIAN HYPOTESIS Lanjutan Tujuan Pembelajaran : Pengujian hypotesis kasus: – Proporsi – Beda dua rata-rata – Beda dua proporsi.

Presentasi serupa


Presentasi berjudul: "1 PENGUJIAN HYPOTESIS Lanjutan Tujuan Pembelajaran : Pengujian hypotesis kasus: – Proporsi – Beda dua rata-rata – Beda dua proporsi."— Transcript presentasi:

1 1 PENGUJIAN HYPOTESIS Lanjutan Tujuan Pembelajaran : Pengujian hypotesis kasus: – Proporsi – Beda dua rata-rata – Beda dua proporsi

2 2 Ilustrasi pada kasus proporsi Pendugaan Interval Pengujian Hypotesis pp P PoPo Nilai P tidak diketahui Nilai P diketahui, tetapi baru anggapan, belum tentu sebenarnya MendugaMenguji

3 3 Design Hypotesis 1 Proporsi 1. Design hypotesis 2 arah : Batas Kritis : o Wilayah Ho Wilayah H 1 Ada 3 macam rancangan design hypotesis : Ho : P = P o H1 : P ≠ P o

4 4 Design Hypotesis 1 Proporsi 2. Design hypotesis 1 arah kanan : Batas Kritis : Ho : P ≤ P o H1 : P > P o  o Wilayah Ho Wilayah H 1

5 5 Design Hypotesis 1 Proporsi 3. Design hypotesis 1 arah kiri Batas Kritis : Ho : P ≥ P o H1 : P < P o  o Wilayah HoWilayah H 1

6 6 Tahapan Pengujian 1. Menentukan Design Hypotesis 2. Menentukan Batas Kritis 3. Menghitung Statistik Uji ( Z hitung) 4. Tentukan letak Z hitung pada batas kritis 5. Ambil keputusan

7 7 Contoh Soal 1 Pak Udin,seorang manager pemasaran bank ABC memperkirakan bahwa tidak kurang dari 40% penduduk di kota DEPOK telah menabung di bank ABC, untuk lebih meyakinkannya ia mengambil sampel 100 orang secara random dan ternyata hanya ada 35 orang yang menabung. Dengan taraf nyata 5% dapatkah kita mendukung perkiraan Pak Udin tadi ? Hypotesis : Tidak kurang dari 40% penduduk di kota DEPOK telah menabung Notasi matematis : ( P ≥ 40% )

8 8 Jawaban soal 1 Ho : P ≤ 0,4 (yg menabung tidak kurang dr 40%) H1 : P > 0,4 (yg menabung kurang dari 40%) ( Ho : P ≥ 0,4 H 1 : P < 0,4 1. Design Hypotesis : 2. Batas kritis : α = 0,05 Wilayah Ho Wilayah H 1 -1,64 z -1,02

9 9 Lanjutan 3. Hitung statistik Uji Zh 4. Letak Zh = -1,02 > Z 0,05 = -1,64  wilayah Ho : P = 0,4 5. Keputusan : kita dapat mendukung perkiraan Pak Udin bahwa tidak kurang dari 40% penduduk di kota DEPOK telah menabung di Bank ABC.

10 10 Ilustrasi pada kasus Beda 2 rata-rata Pendugaan Interval Pengujian Hypotesis (  1 -  2 ) Nilai (  1 -  2 ) tidak diketahui Nilai (  1 -  2 ) diketahui, tetapi baru anggapan, belum tentu sebenarnya Menduga Menguji (  1 -  2 ) = Do ( x 1 - x 2 ) Catatan: Do adl suatu nilai

11 11 Uji Hypotesis Beda 2 rata-rata Design Hypotesis : Z  satu arah kanan satu arah kiri - Z  H 0 :  1 -  2 = Do  1 =  2 H 1 :  1 -  2 ≠ Do  1 ≠  2 Do ≠ 0Do = 0 H 1 :  1 -  2 > Do  1 >  2 H 1 :  1 -  2 < Do  1 <  2 Dua arah H 0 :  1 -  2 ≤ Do  1 ≤  2 H 0 :  1 -  2 ≥ Do  1 ≥  2 Catatan: Do adl suatu nilai

12 12 1. Menentukan Design Hypotesis 2. Menentukan Batas Kritis 3. Menghitung Statistik Uji ( Z hitung) 4. Tentukan letak Z hitung pada batas kritis 5. Ambil keputusan Tahapan Pengujian Beda 2 Rata-rata Do

13 13 Contoh soal 2 Seorang pengusaha lampu neon cap “Cahaya” mengklaim bahwa produknya lebih awet dari pada lampu neon cap “Pilipus”dan awetnya lebih dari 100 jam. Suatu penelitian dilakukan untuk menguji pernyataan pengusaha tersebut. Dengan mengambil sampel random masing-masing sebanyak 50. Setelah dilakukan pengujian daya tahan, diperoleh angka sbb: rata-rata umur lampu cap “Cahaya” = 2305jam dan rata-rata umur lampu cap “Pilipus” = 2200 jam. Diketahui bahwa standar deviasi (populasi) umur lampu “Cahaya” adalah 16 jam dan “Pilipus” 14 jam. Dengan taraf nyata 5% ujilah pernyataan pengusaha lampu neon cap “Cahaya” tersebut!

14 14 Jawaban Diketahui:Selisih  1 -  2 =Do = 100  = 5% Merk “Cahaya”: = 2305  1 = 16 Merk “Pilipus”: = 2200  2 = Ho :  1 -  2 ≤ 100 H 1 :  1 -  2 >  = 5%  Z  = 1,64 3. Zh = ? 4. Letak Zh = 1,66 berada di wilayah H1 :  1 -  2 > Keputusan : klaim pengusaha dpt diterima. 1,64 satu arah kanan DoDo

15 15 Uji Hypotesis Beda 2 Proporsi Design Hypotesis : Z  satu arah kanan satu arah kiri - Z  Dua arah H 0 : P 1 - P 2 = Do P 1 = P 2 H 1 : P 1 - P 2 ≠ Do P 1 ≠ P 2 Do ≠ 0Do = 0 H 1 : P 1 - P 2 > Do P 1 > P 2 H 1 : P 1 - P 2 < Do P 1 < P 2 H 0 : P 1 - P 2 ≤ Do P 1 ≤ P 2 H 0 : P 1 - P 2 ≥ Do P 1 ≥ P 2

16 16 Statistik Uji Beda 2 Proporsi Bila Do=0, maka dimana Do

17 17 Contoh soal 3 Sebuah stasiun TV swasta ingin mengetahui apakah TV- nya lebih disukai kalangan muda dibandingkan kalangan dewasa. Untuk itu ia melakukan survey dengan sampel random masing-masing 2000 orang. Diperoleh angka yang menyukai stasiun TV itu dari kalangan dewasa 400 orang dan kalangan muda 500 orang. Dengan taraf nyata 5%, ujilah apakah stasiun TV itu memang lebih disukai kalangan muda! Diketahui Muda :n1 = 2000k1 = 500  Dewasa:n2 = 2000k2 = 400   = 5%

18 18 Jawaban 1. Ho :P1 = P2 H 1 : P1 > P2 2. Batas Kritis :  = 5%  Z  = 1,64 3. Zh = ? Do = 0 maka : 4. Letak Zh = 3,786 > Z  = 1,64, ada di wil. H 1 : P1 > P2 5. Benar bahwa Stasiun TV tsb lebih disukai kalangan muda 1,64 satu arah kanan = 0,225, 775 DoDo

19 19 Latihan soal 1 Sebuah penerbit surat kabar mengklaim bahwa surat kabarnya memiliki pangsa pasar 60%. Sebuah penelitian dgn 500 responden yg dipilih secara random menunjukkan 250 responden yg suka dengan surat kabar penerbit itu. Dengan taraf nyata 5%, ujilah bahwa klaim tersebut terlalu besar!

20 20 Latihan soal 2 Seorang pengamat pendidikan berpendapat bahwa siswa SMU yang lulus SPMB, 50% diantaranya mengikuti Bimbingan Belajar (Bimbel). Ujilah hypotesis tersebut dengan alternative hypotesis yang mengikuti Bimbel tidak mencapai 50%, jika dari suatu sample sebanyak 50 lulusan 23 siswa yang mengikuti Bimbel. Gunakan taraf nyata 0,05.

21 21 Latihan soal 3 Seorang manajer kedai makanan hendak mengatur jadwal bertugas karyawannya. Berdasarkan pengalamannya selama beberapa tahun, pengunjung paling ramai datang pada hari Senin dan Sabtu. Sang manajer ingin mengetahui perbedaan tingkat penjualan antara hari Senin dan hari Sabtu. Untuk itu Ia mengambil sampel masing-masing 50 hari Senin dan 50 hari Sabtu dari penjualan selama beberapa tahun, diperoleh rerata penjualan hari Senin adalah Rp 10,78 jt dengan deviasi sandar 6,3 jt dan rerata penjualan hari Sabtu adalah Rp 9,08 jt dengan deviasi standar Rp 4,6 jt. Dengan taraf nyata 5% ujilah apakah penjualan hari Senin lebih tinggi dibanding penjualan hari Sabtu ?

22 22 Latihan soal 4 Bagian pengadaan barang perusahaan X dihadapkan pada dua alternative dalam memilih supplier peralatan ATK, yaitu suplier A dan supplier B. Suplier A terkenal dengan tingkat cacat barang kecil sekali, tetapi pengiriman barangnya sering terlambat. Sedangkan Suplier B terkenal dengan tingkat cacat barangnya cukup besar tetapi pengirimannya tepat waktu Perusahaan X lebih menyukai memesan barang dari suplier B asalkan proporsi barang yang cacat tidak lebih dari 1% dibandingkan barang cacat supplier A. Dari pengamatan 400 item barang dari supplier A ternayata mendapatkan cacat barang 20 item. Sedangkan dari supplier B, dari 400 item barang ternyata yang cacat sebanyak 26 item. Apakah perusahaan akan memesan barang dari PTA atau PT B ? uji dengan alpha 5% !.

23 23 Latihan soal 5 Manajer Swalayan Beta Mart, mengatakan bahwa kemasan terigu ”Segitiga Biru” sedikit lebih berat daripada kemasan terigu ”Cakra Kembar”. Namun kelebihan beratnya tidak lebih dari 10 gram. Sebagai tambahan informasi bahwa deviasi standar berat kemasan kedua jenis terigu tersebut adalah sama yaitu 20 gram. Suatu sampel berukuran 20 bungkus diambil secara acak dari jenis terigu ”Segitiga Biru” menghasilkan berat 990 gram. Sedangkan dari sampel acak 25 bungkus terigu ”Cakra Kembar” diperoleh rata-rata 960 gram. –Dengan taraf nyata 2.5%, apakah ada bukti untuk mempercayai pernyataan manajer toko tentang perbedaan berat kemasan kedua jenis terigu?


Download ppt "1 PENGUJIAN HYPOTESIS Lanjutan Tujuan Pembelajaran : Pengujian hypotesis kasus: – Proporsi – Beda dua rata-rata – Beda dua proporsi."

Presentasi serupa


Iklan oleh Google