Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

PENGERTIAN DASAR Prof.Dr. Kusriningrum. (1)Percobaan → Suatu tindakan yang dibatasi dengan nyata dan dapat dianalisis hasilnya. → Penelitian yg direncanakan.

Presentasi serupa


Presentasi berjudul: "PENGERTIAN DASAR Prof.Dr. Kusriningrum. (1)Percobaan → Suatu tindakan yang dibatasi dengan nyata dan dapat dianalisis hasilnya. → Penelitian yg direncanakan."— Transcript presentasi:

1 PENGERTIAN DASAR Prof.Dr. Kusriningrum

2 (1)Percobaan → Suatu tindakan yang dibatasi dengan nyata dan dapat dianalisis hasilnya. → Penelitian yg direncanakan dgn baik utk menemukan fakta2 baru, atau utk memperkuat bahkan menolak hasil2 sebelumnya (2) Perancangan Percobaan → Aturan utk mengambil contoh dari populasi yg diteliti agar diperoleh penduga yang tepat dan teliti dengan biaya dan waktu serta tenaga yang terbatas → Cara utk mendapatkan jawaban bagi suatu permasalahan dgn tepat dan teliti, sesuai biaya, waktu dan tenaga tersedia.

3 (3) POPULASI & (4) SAMPEL (CONTOH) Populasi (Keseluruhan bahan / data yang akan diteliti) Sampel (bagian dari populasi yang diambil untuk diteliti)

4 (1). Populasi tidak terhingga (pop. infinite) Contoh: Mahasiswa ↓ Pengertian: - Mahasiswa yang pernah ada - Mahasiswa yang ada sekarang POPULASI - Mahasiswa yang akan ada - Mahasiswa yang berada dimana saja, diseluruh penjuru dunia (2). Populasi terbatas (pop. finite) (terbatas baik untuk jumlah, tempat dan waktunya) Contoh: Mahasiswa Unair tahun 2009 ↓ terbatas: tempat, jumlah dan waktunya

5 LOGIKANYA: perlu pengamatan tiap-tiap individu untuk populasi besar atau tak terhingga → tidak populasi mungkin dijalankan. (perlu waktu,tenaga, biaya) di per lu kan harus Representatif (mencerminkan segala Kesimpulan dari sampel karakteristik populasi) diharapkan berlaku untuk populasi pengambilannya seobyektif mungkin → dengan cara random SAMPEL POPULASI

6 (5) JUMLAH ANGGOTA Jumlah anggota untuk: - populasi terbatas = N - populasi tak terbatas = ~ - Sampel (Contoh) = n Suatu penelitian: Ingin melihat pengaruh perbedaan pemberian: - pakan ransum A - pakan ransum B - pakan ransum C tiap ransum pemberiannya diulang 10 kali

7 Jumlah anggota keseluruhannya untuk: Ransum A = 10 Ransum B = x 3 = 30 satuan percobaan Ransum C = 10 atau 30 unit percobaan Ulangan Ransum A Ransum B Ransum C

8 (6) NILAI TENGAH (MEAN) Nilai rata-rata (rerata) dari seluruh pengamatan disebut: nilai tengah ( mean = x ) untuk mengetahui penyimpangan / deviasi dari masing-masing angka pengamatan CONTOH: Diketahui sebaran data dari suatu sampel: X1, X2, X3,.....Xn Nilai tengah sampel tersebut: X1 + X Xn n n _ X = = ∑ i = 1 n Xi

9 Nilai tengah untuk populasi: X1 + X X N N N X penduga μ (7) RAGAM (VARIANCE) Diketahui sebaran data suatu populasi: X1, X2, X N dengan nilai tengah μ Simpangan (deviasi) nya: X i - μ X1 X3 μ X2 X4 Bila simpangan-simpangan tersebut dijumlahkan, hasilnya = 0 μ = = ∑ i = 1 N XiXi

10 RAGAM (VARIANCE) POPULASI tersebut: (X1 – μ) + (X2 – μ) (X N – μ) N N Ragam N populasi = = Rara-rata kuadrat simpangan Xi terhadap μ Ukuran jauh dekatnya rata-rata simpangan Xi terhadap μ Bila hasil pengamatan - kuadrat simpangannya besar, Xi jauh dari μ - rata-ratanya juga besar, - ragamnya juga makin besar Makin kecil ragam ( ) populasi makin seragam 222 == ∑ i = 1 N ( X i – μ)

11 RAGAM SUATU SAMPEL: (X1 – X) + (X2 – X) (Xn – X) (X i – X) (n – 1) (n – 1) CATATAN: Sampel Populasi (Contoh) - Jumlah anggota: n N - Nilai tengah: X μ - Ragam (variance) s == s 2 2 ∑ i = 1 n 2 2 penduga

12 (8) SIMPANGAN BAKU (STANDAR DEVIASI) Sebaran data (Xi) Simpangan (deviasi) ( Xi – X ) Kuadrat simpangan ( Xi – X ) X 1 X 2. Xn X 1 – X X 2 - X. Xn - X ( X 1 – X ) ( X 2 – X ). (Xn – X ) ∑ Xi n 0 ∑ ( Xi – X ) X = Jumlah Kuadrat (JK) = Sum Square (SS) 2

13 STANDAR DEVIASI: S = Untuk n < 30 standar Rumus standar deviasi tsb deviasi masih berbias berlaku bila n ≥ 30 Untuk mengurangi bias (ke- Populasi n ≥ 30 salahan pengaruh acak) ma- ka digunakan (n – 1) Standar deviasi untuk po- pulasi n ≥ 30: Standar deviasi untuk n < 30 S = = ∑ (Xi – X ) 2 n 2 n - 1 ∑ ( Xi – μ ) N 2

14 (9) GALAT BAKU RATA-RATA PERLAKUAN (STANDARD ERROR) n anggota → X Populasi n anggota → X Standar deviasi dari sebaran data X disebut Standard error atau Galat baku rata-rata perlakuan = S Sebaran data X POPULASI x -

15 Galat baku rata-rata perlakuan : S = atau S = Semakin kecil S → nilai rata-rata mendekati yang sesungguhnya (nilai tengah dari populasi) ↓ X mendekati μ Makin besar n semakin kecil S x S 2 n x KTG n x x

16 GALAT BAKU BEDA ANTAR RATA-RATA PERLAKUAN Misalnya: Galat Baku Beda antara rata-rata perlakuan ke i dan rata-rata perlakuan ke k S = = KTG + KTG = Kuadrat Tengah Galat n = Jumlah ulangan Yi. – Yk. 2KTG n 1ni1ni 1nk1nk

17 (10) KOEFISIEN KERAGAMAN (KK) (COEFFICIENT OF VARIATION = C.V.) K.K. adalah ratio standar deviasi (S) dan nilai tengah umum (Y..) mengukur besarnya keragaman yang dinyatakan dalam % K.K. = x 100 % = x 100 % Dalam Percobaan (untuk penelitian) : 1. materi percobaan K.K. tergantung 2. sifat perlakuan 3. pengendalian percobaan S Y.. KTG Y..

18 * K.K. percobaan yang dilaksanakan dengan baik berkisar 15 – 20% * K.K. terlalu kecil / terlalu besar merupakan salah satu petunjuk: (1) mungkin terdapat kesalahan dalam: - pengukuran - pencatatan - analisis data (2) K.K. >> ada kemungkinan ukuran sampelnya terlalu sedikit (3) mungkin pemilihan rancangan percobaannya tidak tepat sehingga dihasilkan ragam acak >.

19 (11) PERLAKUAN CONTOH: Percobaan menentukan jenis ransum paling efisien untuk ayam pedaging. Diteliti untuk ransum pakan A, B, C dan D. Perlakuan Rans. pakan A Ransum Rans. pakan B pakan Rans. pakan C Rans. pakan D Faktor perlakuan Level (taraf) perlakuan Ayam Pedaging ke Ransum Pakan A B C D 1 2. n

20 (12) ULANGAN → adalah banyaknya-kali atau frekuensi suatu macam perlakuan yang dicobakan dlm suatu percobaan. 1 s/d 6 disebut ulangan. Domba ke (Ulangan) Perlakuan P Q R S T … … … …... …

21 (13) SIDIK RAGAM = ANALISIS RAGAM (ANALYSIS OF VARIANCE = ANAVA) Analisis Ragam (Sidik Ragam) merupakan cara memudahkan analisis dan interpretasi data hasil percobaan → Untuk penelitian di bidang: Biologi, Ekonomi, Sosial, Industri, dll. CONTOH: Sidik Ragam (untuk Rancangan Acak Lengkap) Galat → Error percobaan = Kesalahan percobaan = Keragaman percobaan = sisa percobaan. Sumber Keragaman (S.K.) Derajad Bebas (d.b.) Jumlah Kuadrat (J.K.) Kuadrat Tengah (K.T.) F hitung F tabel 0,050,01 Perlakuan Galat... T o t a l...

22 (14) SUMBER KERAGAMAN (S.K.) Dalam penelitian di laboratorium atau di lapangan → selalu ada beberapa sebab yang menimbulkan ketidak seragaman disebut Sumber Keragaman CONTOH: Penelitian di lapangan, yang menimbulkan ketidak seragaman (sumber Keragaman) adalah: ( I ).- iklim - manusia diusahakan dapat dikuasai - alat-alat (dibuat seseragam mungkin) - jenis ternak ↓ - umur ternak dibuat “seragam” maka pengaruhnya sama ↓ Dalam Sumber keragaman pengaruh tsb dapat dihilangkan

23 ( II ). - macam ransum yang diteliti ( III ) - Faktor-faktor lingkungan lain yang sulit atau tak mungkin merupakan dikuasai pengaruh acak disebut: Kesalahan percobaan atau Galat percobaan Tanpa usaha ( I ), (II) dan (III), tidak dapat dibenarkan usaha-usaha analisis statistik & penafsirannya Merupakan perlakuan

24 (15) DERAJAT BEBAS (d.b.) Derajat bebas dari suatu variabel : adalah jumlah anggota dalam populasi variabel tsb. yang punya kebebasan untuk terpilih harganya dalam batas-batas tertentu yang telah ditetapkan Derajat bebas = Jumlah anggota yang dipermasalahkan – 1 d.b. = n – 1 - tak perlu tahu harga semua n anggota tsb. [cukup mengetahui (n-1) anggota saja], Dari anggota ke n dapat ditentukan dari (n-1) tsb. n anggota ↓ - (n-1) anggota bebas ditentukan - satu anggota tak bebas lagi ditentukan

25 (16) PENAKSIRAN Penaksiran untuk statistika → adalah penaksiran selang dengan menentukan batas-batas atau limit dalam bentuk %. CONTOH: Dalam penelitian yang akan dilakukan, untuk pengujian hipotesis akan dipergunakan selang kepercayaan (confident interval = interval konfidensi) sebesar 95%. Berarti: Mengambil resiko benar dalam keputusan sedikit- dikitnya 95% (boleh > 95%) atau dipergunakan laju kesalahan (error rate = taraf nyata = significance level) → α = 0,05 Berarti: mengambil resiko salah dalam keputusan sebanyak banyaknya 5% (boleh < 5% ) minimal benar 950 → boleh 960, 975. maksimal salah 50 → boleh 40, 28 Dari 1000 kejadian


Download ppt "PENGERTIAN DASAR Prof.Dr. Kusriningrum. (1)Percobaan → Suatu tindakan yang dibatasi dengan nyata dan dapat dianalisis hasilnya. → Penelitian yg direncanakan."

Presentasi serupa


Iklan oleh Google