Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

LOGO Model Antrian Ir Tito Adi Dewanto. Menunggu dalam suatu antrian adalah hal yang paling sering terjadi dalam kehidupan sehari-hari Intro.

Presentasi serupa


Presentasi berjudul: "LOGO Model Antrian Ir Tito Adi Dewanto. Menunggu dalam suatu antrian adalah hal yang paling sering terjadi dalam kehidupan sehari-hari Intro."— Transcript presentasi:

1 LOGO Model Antrian Ir Tito Adi Dewanto

2 Menunggu dalam suatu antrian adalah hal yang paling sering terjadi dalam kehidupan sehari-hari Intro

3 Theatre 1 Siapapun yang pergi berbelanja atau ke bioskop telah mengalami ketidaknyamanan dalam mengantri untuk membeli atau membayar tiket Skip Intro

4 Dengan memperhatikan hal ini, banyak perusahaan mengusahakan untuk mengurangi waktu menunggu sebagai komponen utama dari perbaikan kualitas. Skip Intro

5 Umumnya, perusahaan dapat mengurangi waktu menunggu dan memberikan pelayanan yang lebih cepat dengan menambah jumlah pelayanan, seperti jumlah teller pada bank atau jumlah kasir pada supermarket. Skip Intro

6 Namun, menambah kapasitas pelayanan memerlukan biaya dan dasar analisi waktu menunggu adalah adanya trade-off antara biaya perbaikan pelayanan dan biaya yang berasal dari waktu menunggu pelanggan. Next Intro Teori Antrian :  Menunggu giliran untuk mendapatkan pelayanan dari suatu fasilitas  Antrian terjadi karena kemampuan pelayanan tidak bisa mengimbangi kebutuhan pelayanan

7 CONTOH SISTEM ANTRIAN Sistem Garis tunggu atau antrian Fasilitas 1. Lapangan terbang Pesawat menunggu di landasan Landasan pacu 2. Bank Nasabah (orang) Kasir 3. Pencucian Mobil Mobil Tempat pencucian mobil 4. Bongkar muat barang Kapat dan truk Fasilitas bongkar muat 5. Sistem komputer Program komputer CPU, Printer, dll 6. Bantuan pengobatan darurat OrangAmbulance 7. Perpustakaan Anggota perpustakaan Pegawai perpustakaan 8. Registrasi mahasiswa Mahasiswa Pusat registrasi 9. Skedul sidang pengadilan Kasus yang disidangkan Pengadilan

8 Nasabah Ke - Jam Datang Jam Pelayanan Waktu Menganggur (teller) Waktu Tunggu (cust) Panjang Antrian MulaiSelesai ’ ’ ’ ’ ’00 8 Tabel 1 Hubungan kedatangan, waktu menganggur, waktu tunggu dan panjang anterian dalam pelayanan nasabah TABANAS di Bank XYZ Contoh 1. Misal pelayanan terhadap nasabah TABANAS pada suatu bank sebagai berikut : Kapasitas pelayanan rata-rata 10 kali setiap jam berarti pelayanan memerlukan waktu 6 menit, sedangkan kedatangan orang/nasabah setiap jam rata-rata 6 orang. Waktu kedatangannya bersifat random dapat dilihat tabel sbb :

9 Nasabah Ke - Jam Datang Jam Pelayanan Waktu Mengangg ur Waktu Tunggu Panjang Antrian MulaiSelesai ’ ’ ’1 9 Tabel 2 Pada tabel diatas terlihat terjadi banyak pengangguran petugas (unit pelayanan) oleh karena itu untuk mengurangi pengangguran kita kurangi petugas shg kapasitas pelayanan menjadi 9 menit tiap nasabah. Yang kita cari adalah alternatif meminimalkan jumlah kedua biaya yaitu biaya pengangguran fasilitas pelayanan dan biaya karena meningkatnya waktu tunggu.

10 10 Pelayanan Analisis Antrian Rerata kedatangan (  Jumlah Rerata dalam Antrian (n q ) Waktu Rerata dalam Sistem (t t ) Jumlah Rerata dalam Sistem (n t ) Waktu Tunggu Rerata dalam Antrian (t q ) Laju ( 

11 11 Grafik hubungan antara biaya, jumlah server dan kinerja Jumlah Server Biaya & jumlah server Kinerja Biaya Pelayanan Optimal Cost / biaya

12 12 Biaya Sistem Antrian   = 0.0 Biaya Fasilitas Pelayanan Biaya Perkiraan Total Biaya Waktu Tunggu Biaya Pengadaan Layanan Biaya Pelayanan Optimal 

13 13 Karakteristik Kedatangan  Ukuran Populasi Kedatangan  Tak terbatas (essentially infinite)  Terbatas (finite)  Pola kedatangan pada sistem  Terjadwal  Secara acak  distribusi Poisson

14 Komponen sistem antrian 1.Populasi masukan Berapa banyak pelanggan potensial yang masuk sistem antrian 2.Distribusi kedatangan Menggambarkan jumlah kedatangan per unit waktu dan dalam periode waktu tertentu berturut-turut dalam waktu yang berbeda 3.Disiplin pelayanan Pelanggan yang mana yang akan dilayani lebih dulu : a. FCFS (first come, first served) b. LCFS (last come, first served) c. Acak (SIRO) d. Prioritas (UGD) 4.Fasilitas Pelayanan mengelompokkan fasilitas pelayanan menurut jumlah yang tersedia : a. Single-channel b. multiple-channel 5.Distribusi Pelayanan a.Berapa banyak pelanggan yang dapat dilayani per satuan waktu b.Berapa lama setiap pelanggan dapat dilayani 6.Kapasitas sistem pelayanan memaksimumkan jumlah pelanggan yang diperkenankan masuk dalam sistem 6.Karakteristik sistem lainnya pelanggan akan meninggalkan sistem jika antrian penuh, dsb

15 Notasi dalam sistem antrian  nt= jumlah pelanggan dalam sistem  Pn= probabilitas kepastian n pelanggan dalam sistem  λ= jumlah rata-rata pelanggan yang datang persatuan waktu  µ= jumlah rata-rata pelanggan yang dilayani per satuan waktu  Po= probabilitas tidak ada pelanggan dalam sistem  p= tingkat intensitas fasilitas pelayanan  n t = jumlah rata-rata pelanggan yang diharapkan dlm sistem  n q = jumlah pelanggan yang diharapkan menunggu dalam antrian  t t = waktu yang diharapkan oleh pelanggan selama dalam sistem  t q = waktu yang diharapkan oleh pelanggan selama menunggu dalam antrian  1/µ= waktu rata-rata pelayanan  1/λ= waktu rata-rata antar kedatangan  S= jumlah fasilitas pelayanan  C t = Biaya Total = S.C s + n t.C w

16 16 Konfigurasi Sistem Antrian Single Channel, Single Phase System Single Channel, Multiphase System

17 17 Konfigurasi Sistem Antrian Multichannel, Single Phase System Multichannel, Multiphase System

18 18 Disiplin Antrian  Bagaimana pelanggan diseleksi dari antrian untuk dilayani?  First Come First Served (FCFS)  Last Come First Served (LCFS)  Served in Random Order (SIRO)  Priority (jobs are in different priority classes)/UGD  Untuk kebanyakan model diasumsikan FCFS Pemrograman Simulasi

19 19 Penamaan Antrian  X / Y / k (notasi Kendall)  X = distribusi kedatangan (iid)  Y = distribusi waktu pelayanan (iid)  M = distribusi eksponensial untuk waktu layanan dan kedatangan  E k = distribusi Erlang k  G = general (antrian secara umum)  D = deterministic (layanan dan kedatangan konstan)  k = jumlah server Pemrograman Simulasi

20 20 Model Antrian 1.M/M/1 atau M/M/I/I/I 2.M/M/s atau M/M/S/I/I 3.Model Waktu Pelayanan Konstan 4.G/G/k 5.Model Populasi Terbatas

21 21 Antrian M/M/1

22 22 Asumsi M/M/1  Laju kedatangan  (distribusi Poisson)  Laju pelayanan  (distribusi exponential)  Server tunggal (satu fasilitas pelayanan)  First-come-first-served (FCFS)  Panjang antrian tak terbatas  Jumlah pelanggan tak terbatas

23 SINGLE CHANNEL MODEL Model yang paling sederhana yaitu model saluran tunggal atau sistem M/M/1 1.Populasi input tak terbatas 2.Distribusi kedatangan pelanggan potensial mengikuti distribusi poisson 3.Disipliln pelayanan mengikuti FCFS 4.Fasilitas pelayanan terdiri dari saluran tunggal 5.Distribusi pelayanan mengikuti distribusi poisson 6.Kapasitas sistem diasumsikan tak terbatas 7.Tidak ada penolakan maupun pengingkaran

24 24 Karakteristik Operasi M/M/1 Faktor Utilitas Rerata Waktu Tunggu Rerata Jumlah Pelanggan

25 25 Karakteristik Operasi M/M/1 Persentasi Waktu Luang Prob ada n Pelanggan dalam Sistem Biaya Pengeluaran Total Total Cost = Waiting Cost + Service Cost Pemrograman Simulasi C t = Biaya Total = n t.C w + S.C s

26 26 Contoh 1 Sebuah bank memiliki 1 mesin ATM. Kenyataanya :  Waktu rata-rata untuk melayani customer 50 detik  Rata-rata customer yang akan memakai atm 60 org/jam  Dirancang pembuatan mesin ATM yang baru.  Pihak bank ingin mengetahui probabilitas seorang customer pasti harus mengantri untuk memakai ATM Penyelesaian :  =Tingkat kedatangan = 60 org/jam   = tingkat layanan = 1 org/50 detik x 3600 detik /1 jam= 72 org/jam Sehingga tingkat kesibukan = 60/72 = 0,833  Rata waktu tunggu dalam antrian = 0,0694 jam = 4,167menit  Artinya P(seorang customer harus mengantri) = 0,833  Lama menunggu rata-rata = 4,167 menit  Rata jumlah customer dalam antrian = 4,2 = 4 org Pemrograman Simulasi

27 27 Contoh 2 Suatu toko variasi mobil memiliki data sbb: Selama 1 jam rata-rata ada 3 pembeli yang datang. Kapasitas pelayanan yang ada rata-rata setiap jam mampu melayani 8 langganan/pembeli. Hitunglah :  A. Rata-rata jumlah langganan yang antri sebelum dilayani  B. Rata-rata jumlah langganan dalam sistem  C. Rata-rata lama langganan sebelum dilayani  D. Rata-rata lama langganan dalam sistem  E. Prob ada n langganan dalam sistem  F. Rata-rata banyak langganan yang sedang dilayani  G. Kalau biaya pelayanan setiap jam Rp 500 dan biaya karena langganan menunggu setiap jam Rp 100, maka hitunglah jumlah seluruhnya setiap jam. Pemrograman Simulasi

28 28  =Tingkat kedatangan = 3 org/jam   = tingkat layanan = 8 org/jam G> E(Ct) = S.Cs + nt.Cw = ,6.100=560 n >8 P 0,625 0,324 0,088 0,012 0,005 0,002 0,001 0

29 Contoh 3 PT CIARD mengoperasikan satu buah pompa bensin dengan satu operator. Rata-rata tingkat kedatangan kendaraan mengikuti distribusi poisson yaitu 20 kendaraan per jam. Operator dapat melayani rata-rata 25 mobil per jam, dengan waktu pelayanan setiap mobil mengikuti distribusi probabilitas eksponensial. Jika diasumsikan model sistem antrian yang digunakan operator tersebut (M/M/1), hitunglah : 1.Tingkat intensitas (kegunaan) pelayanan (p) 2.Jumlah rata-rata kendaraan yang diharapkan dalam sistem 3.Jumlah kendaraan yang diharapkan menunggu dalam antrian 4.Waktu yang diharapkan oleh setiap kendaraan selama dalam sistem (menunggu pelayanan) 5.Waktu yang diharapkan oleh setiap kendaraan untuk menunggu dalam antrian Mobil antri menunggu pelayanan s 1 pompa bensin melayani 20 mobil per jam Kedatangan mobil, 15 per jam Mobil Keluar SPBU CIARD Fasilitas Pelayanan

30 Penyelesaian λ = 20 dan µ = 25 1.Tingkat intenstas (kegunaan) pelayanan atau Angka tersebut menunjukkan bahwa operator akan sibuk melayani kendaraan selama 80% dari waktunya. Sedangkan 20% dari waktunya (1 – p) yang sering disebut idle time akan digunakan operator untuk istirahat, dll 2 Angka tersebut menunjukkan bahwa operator dapat mengharapkan 4 mobil yang berada dalam sistem

31 3 Angka tersebut menunjukkan bahwa mobil yang menunggu untuk dilayani dalam antrian sebanyak 3,20 kendaraan 4 Angka tersebut menunjukkan bahwa waktu rata-rata kendaraan menunggu dalam sistem selama 12 menit 5 Angka tersebut menunjukkan bahwa waktu rata-rata kendaraan menunggu dalam antrian selama 9,6 menit

32 32 Antrian M/M/s Pemrograman Simulasi

33 33 Asumsi M/M/s  Laju kedatangan of  (distribusi Poisson)  Service rate of  (distribusi exponential)  Dua/lebih server  First-come-first-served (FCFS)  Panjang antrian tak terbatas  Jumlah pelanggan tak terbatas  Laju pelayanan sama pada semua server Pemrograman Simulasi

34 34 Karakteristik Operasi M/M/s Faktor Utilitas/rata-rata banyaknya objek dalam fasilitas pelayanan Rerata Waktu Tunggu Rerata Jumlah Pelanggan Pemrograman Simulasi

35 35 Karakteristik Operasi M/M/s Persentasi Waktu Luang Pemrograman Simulasi

36 36 Contoh 4 Sebuah supermaket memiliki 4 jalur keluar/pembayaran. Kedatangan customer dengan tingkatan 100 org/jam. Rata- rata 1 customer dilayani 2 menit. Ingin diketahui :  Berapa jumlah customer berada dalam antrian !  Probabilitas customer tidak harus antri ! Penyelesaian : M = 4 = 100 org/jam = 30 org/jam  1 jam = ?? Org 1 org = 2 menit 1 jam = 60/2 = 30 org Sehingga = 0,8331 Dari dan diperoleh nq = 3,29 org

37 Pemrograman Simulasi 37 SOAL UJIAN OPERATION RESEARCH TEORI ANTRIAN 1.Pengertian Sistem Antrian adalah ……. A. Pelayanan kepada pelanggan B. Pelayanan setiap pelanggan dating C. Keseluruhaan dari layanan yang diberikan kepada pelanggan sejak ia datang sampai selesai dilayani. D. Keseluruhan dari layanan sejak pelanggan datang. 2. Penyebab timbulnya antrian adalah …… A. Orang yang perlu dilayani terlalu banyak B. Fasilitas layanan sedikit C. Antri yang lama mendatangkan kepuasan D. Kedatangan orang yang ingin dilayani persatuan waktu lebih tinggi dari lama pelayanan persatuan waktu.

38 Pemrograman Simulasi ‘Traffic Intencity’ merupakan perbandingan rata-rata kedatangan dengan rata-rata kemampuan pelayanan. Formulanya adalah …. A.  B. C.  / D. /  4. Suatu toko variasi mobil memiliki data sebagai berikut : Selama 1 jam rata- rata ada 3 pembeli yang datang. Kapasitas pelayanan yang ada rata-rata setiap jam mampu melayani 8 langganan. Traffic Intencity adalah ….. A. 3/8 B. 8/3 C. 24 D. 2 2/3

39 39 Lihat diagram berikut : PHASE 1 PHASE 2 5. Model antrian diatas adalah ….. A. Multi Channel-Single Phase B. Multi Channel-Multi Phase C. Single Channel-Multi Phase D. Single Channel-Single Phase 6. Tingkat pelayanan dalam suatu periode tertentu dalam antrian …… A.  B.  / C. /  D. 7. Model distribusi kedatangan memiliki ketentuan jumlah … A. Macam fasilitas pelayanan banyak B. System lebih dari 1 C. Kapasitas antrian terbatas D. Masukan tidak terhingga

40 Pemrograman Simulasi 40 Model antrian dibawah adalah ….. A. Multi Channel-Multi Phase B. Single Channel-Multi Phase C. Single Channel-Single Phase D. Multi Channel-Single Phase 9. Disiplin antrian secara acak tanpa memandang kedatangan disebut …. A. FCFS B. LCFS C. SIRO D. Emergency First 8. Model antrian dibawah adalah …..

41 Pemrograman Simulasi Toko jujur setiap jam dikunjungi 4 pembeli. Kapasitas pelayanan setiap jam di toko jujur adalah 6 orang. Hitung rata-rata waktu antrian sebelum dilayani…. A. 0,30 B. 0,31 C. 0,32 D. 0, Objek yang datang atau masuk ke dalam system yang memerlukan pelayanan disebut dengan …. A. Antri B. Antrian C. Input D. Output 12. Struktur yang dipakai di Rumah Sakit adalah ….. A. Multi Channel-Single Phase B. Multi Channel-Multi Phase C. Single Channel-Multi Phase D. Single Channel-Single Phase


Download ppt "LOGO Model Antrian Ir Tito Adi Dewanto. Menunggu dalam suatu antrian adalah hal yang paling sering terjadi dalam kehidupan sehari-hari Intro."

Presentasi serupa


Iklan oleh Google