Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

REPRESENTASI DATA Pengantar Komputer Teknik Sipil dan Perencanaan Universitas Gunadarma.

Presentasi serupa


Presentasi berjudul: "REPRESENTASI DATA Pengantar Komputer Teknik Sipil dan Perencanaan Universitas Gunadarma."— Transcript presentasi:

1 REPRESENTASI DATA Pengantar Komputer Teknik Sipil dan Perencanaan Universitas Gunadarma

2 Pendahuluan Materi ini mendiskusikan beberapa konsep penting mencakup sistem bilangan biner dan hexadecimal, organisasi data biner (bit, nibbles, byte, kata/word, dan double word), sistem penomoran bertanda (signed) dan tidak bertanda (unsigned), aritmatika, logika, shift/geser, dan operasi rotate pada nilai biner, bit field dan paket data, dan himpunan karakter ASCII Materi ini mendiskusikan beberapa konsep penting mencakup sistem bilangan biner dan hexadecimal, organisasi data biner (bit, nibbles, byte, kata/word, dan double word), sistem penomoran bertanda (signed) dan tidak bertanda (unsigned), aritmatika, logika, shift/geser, dan operasi rotate pada nilai biner, bit field dan paket data, dan himpunan karakter ASCII

3 Sistem Bilangan dan Konversi Bilangan

4 Pendahuluan Ada beberapa sistem bilangan yang digunakan dalam sistem digital. Yang paling umum adalah sistem bilangan desimal, biner, oktal dan heksadesimal Ada beberapa sistem bilangan yang digunakan dalam sistem digital. Yang paling umum adalah sistem bilangan desimal, biner, oktal dan heksadesimal Sistem bilangan desimal merupakan sistem bilangan yang paling familier dengan kita karena berbagai kemudahannya yang kita pergunakan sehari – hari. Sistem bilangan desimal merupakan sistem bilangan yang paling familier dengan kita karena berbagai kemudahannya yang kita pergunakan sehari – hari.

5 Sistem Bilangan Secara matematis sistem bilangan bisa ditulis seperti contoh di bawah ini: Secara matematis sistem bilangan bisa ditulis seperti contoh di bawah ini:

6 SistemRadiksHimpunan/elemen Digit Contoh Desimalr=10 r=2 r=16 r= 8 {0,1,2,3,4,5,6,7,8,9} Biner {0,1,2,3,4,5,6,7} {0,1} {0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F} FF 16 Oktal Heksadesimal Biner Heksa A B C D E F Desimal

7 Konversi Radiks-r ke desimal Rumus konversi radiks-r ke desimal: Rumus konversi radiks-r ke desimal: Contoh: Contoh: = 1    = 1    2 0 = = = = = 5    = 5    8 0 = = = = A 16 = 2   A 16 = 2   16 0 = = = = 42 10

8 Konversi Bilangan Desimal ke Biner Konversi bilangan desimal bulat ke bilangan Biner: Gunakan pembagian dgn 2 secara suksesif sampai sisanya = 0. Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB). Konversi bilangan desimal bulat ke bilangan Biner: Gunakan pembagian dgn 2 secara suksesif sampai sisanya = 0. Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB).

9 Contoh: Konersi ke biner: Contoh: Konersi ke biner: 179 / 2 = 89 sisa 1 (LSB) 179 / 2 = 89 sisa 1 (LSB) / 2 = 44 sisa 1 / 2 = 44 sisa 1 / 2 = 22 sisa 0 / 2 = 22 sisa 0 / 2 = 11 sisa 0 / 2 = 11 sisa 0 / 2 = 5 sisa 1 / 2 = 5 sisa 1 / 2 = 2 sisa 1 / 2 = 2 sisa 1 / 2 = 1 sisa 0 / 2 = 1 sisa 0 / 2 = 0 sisa 1 (MSB) / 2 = 0 sisa 1 (MSB)  =  = MSB LSB MSB LSB

10 Konversi Bilangan Desimal ke Oktal Konversi bilangan desimal bulat ke bilangan oktal: Gunakan pembagian dgn 8 secara suksesif sampai sisanya = 0. Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB). Konversi bilangan desimal bulat ke bilangan oktal: Gunakan pembagian dgn 8 secara suksesif sampai sisanya = 0. Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB).

11 Contoh: Konversi ke oktal: Contoh: Konversi ke oktal: 179 / 8 = 22 sisa 3 (LSB) 179 / 8 = 22 sisa 3 (LSB) / 8 = 2 sisa 6 / 8 = 2 sisa 6 / 8 = 0 sisa 2 (MSB) / 8 = 0 sisa 2 (MSB)  =  = MSB LSB MSB LSB

12 Konversi Bilangan Desimal ke Hexadesimal Konversi bilangan desimal bulat ke bilangan hexadesimal: Gunakan pembagian dgn 16 secara suksesif sampai sisanya = 0. Sisa- sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB). Konversi bilangan desimal bulat ke bilangan hexadesimal: Gunakan pembagian dgn 16 secara suksesif sampai sisanya = 0. Sisa- sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB).

13 Contoh: Konversi ke hexadesimal: Contoh: Konversi ke hexadesimal: 179 / 16 = 11 sisa 3 (LSB) 179 / 16 = 11 sisa 3 (LSB) / 16 = 0 sisa 11 (dalam bilangan hexadesimal berarti B)MSB / 16 = 0 sisa 11 (dalam bilangan hexadesimal berarti B)MSB  = B3 16  = B3 16 MSB LSB MSB LSB

14 Konversi Bilangan Biner ke Oktal Untuk mengkonversi bilangan biner ke bilangan oktal, lakukan pengelompokan 3 digit bilangan biner dari posisi LSB sampai ke MSB

15 Contoh: konversikan ke bilangan oktal Contoh: konversikan ke bilangan oktal Jawab : Jawab : Jadi = Jadi = 263 8

16 Konversi Bilangan Oktal ke Biner Sebaliknya untuk mengkonversi Bilangan Oktal ke Biner yang harus dilakukan adalah terjemahkan setiap digit bilangan oktal ke 3 digit bilangan biner

17 Contoh Konversikan ke bilangan biner. Contoh Konversikan ke bilangan biner. Jawab: Jawab: Jadi = Karena 0 didepan tidak ada artinya kita bisa menuliskan Jadi = Karena 0 didepan tidak ada artinya kita bisa menuliskan

18 Konversi Bilangan Biner ke Hexadesimal Untuk mengkonversi bilangan biner ke bilangan hexadesimal, lakukan pengelompokan 4 digit bilangan biner dari posisi LSB sampai ke MSB

19 Contoh: konversikan ke bilangan heksadesimal Contoh: konversikan ke bilangan heksadesimal Jawab : Jawab : B 3 B 3 Jadi = B3 16 Jadi = B3 16

20 Konversi Bilangan Hexadesimal ke Biner Sebaliknya untuk mengkonversi Bilangan Hexadesimal ke Biner yang harus dilakukan adalah terjemahkan setiap digit bilangan Hexadesimal ke 4 digit bilangan biner

21 Contoh Konversikan B3 16 ke bilangan biner. Contoh Konversikan B3 16 ke bilangan biner. Jawab: B 3 Jawab: B Jadi B3 16 = Jadi B3 16 =

22 Tugas Konversikan Bilangan di Bawah ini Konversikan Bilangan di Bawah ini = …… = …… = …… = …… = …… = …… 10 7FD 16 = …… 8 7FD 16 = …… 8 29A 16 = …… 10 29A 16 = …… = …… = …… = …… = …… = …… = …… 16

23 Konversi ke hexadesimal: Konversi ke hexadesimal: 89 / 16 = 5 sisa 9 89 / 16 = 5 sisa = = Konversi ke biner: Konversi ke biner: 3 = 011 ; 6 = 110 ; 7 = = 011 ; 6 = 110 ; 7 = 111 » = » = Konversi ke desimal: Konversi ke desimal: = 1      2 0 = = Jawaban

24 Jawaban Konversi 7FD 16 ke oktal: Konversi 7FD 16 ke oktal: 7 = 0111 ; F = 1111 ; D = = 0111 ; F = 1111 ; D = = = = = » 7FD 16 = » 7FD 16 = Konversi 29A 16 ke desimal: Konversi 29A 16 ke desimal: = 2   A  16 0 = =

25 Jawaban Konversi ke Oktal Konversi ke Oktal 110= 6 ; 111 = 7  = 67 8 Konversi ke biner Konversi ke biner 359 / 2 = 179 sisa 1 (LSB) 359 / 2 = 179 sisa 1 (LSB) / 2 = 89 sisa 1 / 2 = 89 sisa 1 / 2 = 44 sisa 1 / 2 = 44 sisa 1 / 2 = 22 sisa 0 / 2 = 22 sisa 0 / 2 = 11 sisa 0 / 2 = 11 sisa 0 / 2 = 5 sisa 1 / 2 = 5 sisa 1 / 2 = 2 sisa 1 / 2 = 2 sisa 1 / 2 = 1 sisa 0 / 2 = 1 sisa 0 / 2 = 0 sisa = 1 (MSB) / 2 = 0 sisa = 1 (MSB)  =  =

26 Jawaban Konversi ke hexadecimal = 314 Konversi ke hexadecimal = = = = 13A = 13A 16

27 Organisasi Data

28 Pendahuluan Komputer secara umum bekerja dengan beberapa jumlah bit khusus. Kumpulan yang Umum adalah bit tunggal, kelompok empat bit (disebut nibbles), kelompok delapan bit (disebut byte), kelompok 16 bit (disebut word), dan lain-lain. Komputer secara umum bekerja dengan beberapa jumlah bit khusus. Kumpulan yang Umum adalah bit tunggal, kelompok empat bit (disebut nibbles), kelompok delapan bit (disebut byte), kelompok 16 bit (disebut word), dan lain-lain.

29 Bits "Unit" paling kecil dari data pada komputer biner adalah satu bit tunggal. "Unit" paling kecil dari data pada komputer biner adalah satu bit tunggal. satu bit tunggal mampu merepresentasikan hanya dua nilai yang berbeda (secara tipikal nol atau satu) satu bit tunggal mampu merepresentasikan hanya dua nilai yang berbeda (secara tipikal nol atau satu) Anda bisa merepresentasikan dua item data apapun yang berbeda dengan satu bit tunggal. Contoh meliputi nol atau satu, benar atau salah, on atau off, pria atau wanita. Anda tidak dibatasi untuk merepresentasikan jenis data biner (yaitu, objek yang hanya mempunyai dua nilai yang berbeda). Anda bisa merepresentasikan dua item data apapun yang berbeda dengan satu bit tunggal. Contoh meliputi nol atau satu, benar atau salah, on atau off, pria atau wanita. Anda tidak dibatasi untuk merepresentasikan jenis data biner (yaitu, objek yang hanya mempunyai dua nilai yang berbeda).

30 Bits Data adalah apa yang anda ingin definisikan. Data adalah apa yang anda ingin definisikan. Jika anda menggunakan bit untuk merepresentasikan suatu nilai boolean (benar/salah) maka bit itu (oleh definisi anda) merepresentasikan benar atau salah. Jika anda menggunakan bit untuk merepresentasikan suatu nilai boolean (benar/salah) maka bit itu (oleh definisi anda) merepresentasikan benar atau salah. Agar bit mempunyai maksud/arti yang benar, anda harus konsisten. Maka, jika anda sedang menggunakan bit untuk merepresentasikan benar atau salah di dalam program anda, anda tidak boleh menggunakan nilai benar/salah yang disimpan dalam bit tsb untuk merepresentasikan merah atau biru. Agar bit mempunyai maksud/arti yang benar, anda harus konsisten. Maka, jika anda sedang menggunakan bit untuk merepresentasikan benar atau salah di dalam program anda, anda tidak boleh menggunakan nilai benar/salah yang disimpan dalam bit tsb untuk merepresentasikan merah atau biru.

31 Nibbles nibble adalah satu koleksi empat bit. Ia bukan merupakan jenis data yang menarik kecuali dua item: bilangan BCD (binary coded decimal) dan bilangan berbasis enambelas. nibble adalah satu koleksi empat bit. Ia bukan merupakan jenis data yang menarik kecuali dua item: bilangan BCD (binary coded decimal) dan bilangan berbasis enambelas. Ia menggunakan empat bit untuk merepresentasikan satu BCD tunggal atau digit hexadecimal. Dengan suatu nibble, kita bisa merepresentasikan sampai dengan 16 nilai berbeda. Ia menggunakan empat bit untuk merepresentasikan satu BCD tunggal atau digit hexadecimal. Dengan suatu nibble, kita bisa merepresentasikan sampai dengan 16 nilai berbeda.

32 Nibbles Dalam kasus bilangan berbasis enambelas, nilai dapat berupa 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, dan F direpresentasikan dengan empat bit. BCD menggunakan sepuluh angka berbeda (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) Dalam kasus bilangan berbasis enambelas, nilai dapat berupa 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, dan F direpresentasikan dengan empat bit. BCD menggunakan sepuluh angka berbeda (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

33 Bytes Struktur data terpenting yang digunakan oleh mikroprosesor 80x86 adalah byte. Sebuah byte terdiri dari delapan bit dan adalah datum addressable paling kecil (data item) pada mikroprosesor 80x86. Struktur data terpenting yang digunakan oleh mikroprosesor 80x86 adalah byte. Sebuah byte terdiri dari delapan bit dan adalah datum addressable paling kecil (data item) pada mikroprosesor 80x86. Memori Utama dan alamat I/O pada 80x86 adalah semua alamat byte. Artinya bahwa item paling kecil yang mungkin diakses secara individu oleh satu program 80x86 adalah nilai delapan-bit. Memori Utama dan alamat I/O pada 80x86 adalah semua alamat byte. Artinya bahwa item paling kecil yang mungkin diakses secara individu oleh satu program 80x86 adalah nilai delapan-bit.

34 Bytes Bit dalam satu byte secara normal dinomori dari nol sampai tujuh menggunakan konvensi di dalam gambar 1.1. Bit dalam satu byte secara normal dinomori dari nol sampai tujuh menggunakan konvensi di dalam gambar 1.1. Bit 0 adalah urutan bit terendah atau bit paling tidak berarti (signifikan), bit 7 adalah urutan bit paling berarti (signifikan) dari byte. Kita akan mengacu pada penomoran semua bit lain. Bit 0 adalah urutan bit terendah atau bit paling tidak berarti (signifikan), bit 7 adalah urutan bit paling berarti (signifikan) dari byte. Kita akan mengacu pada penomoran semua bit lain.

35 Bytes Gambar 1.1: Penomoran Bit dalam satu Byte Perhatikan bahwa satu byte juga berisi persis dua nibble (lihat gambar 1.2). Perhatikan bahwa satu byte juga berisi persis dua nibble (lihat gambar 1.2). Gambar 1.2: Dua Nibbles dalam satu Byte

36 Word Sebuah word adalah kelompok 16 bit. Kita akan menomori bit dalam word mulai dari nol sampai dengan lima belas. Penomoran bit muncul di gambar 1.3. Sebuah word adalah kelompok 16 bit. Kita akan menomori bit dalam word mulai dari nol sampai dengan lima belas. Penomoran bit muncul di gambar 1.3. Gambar 1.3: Nomor Bit dalam Word Seperti byte, bit 0 adalah urutan bit terendah dan bit 15 adalah urutan bit tertinggi. Seperti byte, bit 0 adalah urutan bit terendah dan bit 15 adalah urutan bit tertinggi.

37 Word Perhatikan bahwa satu word berisi persis dua byte. Bit 0 sampai 7 membentuk urutan byte terendah, bit 8 hingga 15 membentuk urutan byte tertinggi (lihat gambar 1.4). Perhatikan bahwa satu word berisi persis dua byte. Bit 0 sampai 7 membentuk urutan byte terendah, bit 8 hingga 15 membentuk urutan byte tertinggi (lihat gambar 1.4). Gambar 1.4: Dua Bytes dalam Word Secara alami, satu word mungkin saja dipecah ke dalam empat nibble seperti diperlihatkan di dalam gambar 1.5. Secara alami, satu word mungkin saja dipecah ke dalam empat nibble seperti diperlihatkan di dalam gambar 1.5.

38 Word Gambar 1.5: Nibble dalam Sebuah Word Nibble nol adalah nibble urutan terendah dalam word dan nibble tiga adalah nible urutan tertinggi dari word. Dua nibble lain adalah “nibble satu” atau “nibble dua”. Nibble nol adalah nibble urutan terendah dalam word dan nibble tiga adalah nible urutan tertinggi dari word. Dua nibble lain adalah “nibble satu” atau “nibble dua”.

39 Word Dengan 16 bit, anda bisa merepresentasikan 216 (65,536) nilai yang berbeda. Ini bisa menjadi nilai dalam jangkauan 0..65,535 (atau, sebagai kasus biasanya, -32, ,767) atau jenis data lain apapun tanpa lebih dari 65,536 nilai. Dengan 16 bit, anda bisa merepresentasikan 216 (65,536) nilai yang berbeda. Ini bisa menjadi nilai dalam jangkauan 0..65,535 (atau, sebagai kasus biasanya, -32, ,767) atau jenis data lain apapun tanpa lebih dari 65,536 nilai.

40 Operasi Bilangan

41 Pertambahan Bilangan Biner Operasi aritmatika terhadap bilangan biner yang dilakukan oleh komputer di ALU terdiri dari operasi pertambahan dan pengurangan. Operasi aritmatika terhadap bilangan biner yang dilakukan oleh komputer di ALU terdiri dari operasi pertambahan dan pengurangan. Operasi perkalian binar dapat dilakukan dgn operasi pertambahan yang dilakukan secara berulang-ulang. Pembagian biner dapat dilakukan dgn operasi pengurangan yang dilakukan secara berulang-ulang Operasi perkalian binar dapat dilakukan dgn operasi pertambahan yang dilakukan secara berulang-ulang. Pembagian biner dapat dilakukan dgn operasi pengurangan yang dilakukan secara berulang-ulang

42 Pertambahan Bilangan Biner Pertambahan bilangan biner dapat dilakukan dengan cara yang sama seperti halnya pertambahan bilangan desimal. Pertambahan bilangan biner dapat dilakukan dengan cara yang sama seperti halnya pertambahan bilangan desimal. Pertambahan bilangan desimal dapat dilakukan dengan cara Pertambahan bilangan desimal dapat dilakukan dengan cara - digit2 dari bilangan2 desimal ditambahkan satu persatu mulai dari posisi paling kanan - Bila hasil pertambahan antar kolom melebih nilai 9, maka dikurangi dengan nilai 10 untuk dibawa ke pertambahan kolom berikutnya

43 Contoh carry of 1 2carry of carry of 1 62 carry of

44 Contoh Langkah2nya: = = 0 dgn carry of = 0 dgn carry of = 0dgn carry of 1

45 Pengurangan Bilangan Biner Bilangan biner dikurangkan dengan cara yang sama dgn pengurangan bilangan desimal. Dasar pengurangan untuk masing-masing digit bilangan biner adalah = 0 Bilangan biner dikurangkan dengan cara yang sama dgn pengurangan bilangan desimal. Dasar pengurangan untuk masing-masing digit bilangan biner adalah = = = 1 1 – 1 = 0 1 – 1 = 0 0 – 1 = 1dgn borrow of 1 0 – 1 = 1dgn borrow of 1

46 Metode Pengurangan Komputer Komputer melakukan pengurangan dengan cara menggunakan komplemen, yaitu komplemen basis minus 1. Komputer melakukan pengurangan dengan cara menggunakan komplemen, yaitu komplemen basis minus 1. Di dalam sistem bilangan desimal ada 2 komplemen yakni 9s komplemen dan 10s komplemen. Di dalam sistem bilangan desimal ada 2 komplemen yakni 9s komplemen dan 10s komplemen. Di dalam sistem bilangan biner ada 2 komplemen yakni 1s komplemen dan 2s komplemen Di dalam sistem bilangan biner ada 2 komplemen yakni 1s komplemen dan 2s komplemen

47 Contoh 9s Komplemen adalah

48 Contoh 10s Komplemen adalah dibuang

49 Contoh 1s Komplemen adalah

50 Contoh 2s Komplemen adalah dibuang

51 Daftar Pustaka Digital Principles and Applications, Leach- Malvino, McGraw-Hill Digital Principles and Applications, Leach- Malvino, McGraw-Hill Sistem Digital konsep dan aplikasi, freddy kurniawan, ST. Sistem Digital konsep dan aplikasi, freddy kurniawan, ST. Elektronika Digiltal konsep dasar dan aplikasinya, Sumarna, GRAHA ILMU Elektronika Digiltal konsep dasar dan aplikasinya, Sumarna, GRAHA ILMU

52 Operasi Logika Biner 0 AND 1 = 00 XOR 0 = 0 0 AND 1 = 00 XOR 0 = 0 1 AND 0 = 00 XOR 1 = 1 1 AND 0 = 00 XOR 1 = 1 1 AND 1 = 11 XOR 0 = 1 1 AND 1 = 11 XOR 0 = 1 0 AND 0 = 01 XOR 1 = 0 0 AND 0 = 01 XOR 1 = 0 0 OR 1 = 1NOT (1) = 0 0 OR 1 = 1NOT (1) = 0 1 OR 0 = 1NOT (0) = 1 1 OR 0 = 1NOT (0) = 1 1 OR 1 = 1 1 OR 1 = 1 0 OR 0 = 0 0 OR 0 = 0


Download ppt "REPRESENTASI DATA Pengantar Komputer Teknik Sipil dan Perencanaan Universitas Gunadarma."

Presentasi serupa


Iklan oleh Google