Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

DASAR ILMU TANAH Klasifikasi Tanah Klasifikasi Tanah.

Presentasi serupa


Presentasi berjudul: "DASAR ILMU TANAH Klasifikasi Tanah Klasifikasi Tanah."— Transcript presentasi:

1 DASAR ILMU TANAH Klasifikasi Tanah Klasifikasi Tanah

2 KLASIFIKASI TANAH

3 Klasifikasi Tanah Usaha membeda-bedakan  mengelompokkan tanah berdasarkan sifat- sifatnya Tujuan mengetahui sifat dan ciri tanah pada masing- masing kelompok tanah (kelas tanah) sehingga memudahkan pengguna tanah untuk mengelola tanah tersebut agar dapat berproduksi secara optimal

4 Alami/taksonomi:berdasarkan sifat 2 alami tanah tanpa dihub. dgn pengunaannya - Taksonomi Tanah (USDA) Teknikal: berdasarkan tujuan khusus dgn memilih ciri 2 ttt yg pgrhi kemampuan dan penggunaannya - - Klasifikasi Kemampuan Lahan USDA - - Klasifikasi Kesesuaian Lahan FAO Klasifikasi

5 Why Classify Soils? Organize knowledge to enable investigation and communication (structure/organization) Provide framework for establishing relationships among soils and their environment (scientific) Establish groupings for interpretations (utilitarian) –Optimal use –Hazard/limitation/remediation assessment –Potential productivity –Framework for technology transfer/information dissemination

6 Tanah bermacam-macam

7 Klasifikasi Tanah di Indonesia Sejak th 1988 hanya gunakan sistem Taksonomi Tanah. Sejak th 1988 hanya gunakan sistem Taksonomi Tanah. Sebelum 1988 ada 3 : Sebelum 1988 ada 3 : - Pusat Penelitian Tanah (PPT) - FAO/UNESCO - Taksonomi Tanah.

8 Taksonomi Tanah (USDA) dikembangkan oleh Soil Survey Staff (USDA), tahun 1975 Terus direvisi  2ed, 1999 ada 6 kategori yaitu Order, Suborder, Great group, Subgroup, Family dan Series.

9 Categories in ST: Order – key soil properties resulting from major soil- forming processes (epipedons, subsurface horizons, materials, characteristics) Order – key soil properties resulting from major soil- forming processes (epipedons, subsurface horizons, materials, characteristics) Suborder – key soil properties that are major controls on soil-forming processes, e.g., soil climate (most orders); kinds of salts (Aridisols); kinds of soil parent materials (Entisols); degree of decomposition (Histosols); presence or absence of cryoturbation (Gelisols) Suborder – key soil properties that are major controls on soil-forming processes, e.g., soil climate (most orders); kinds of salts (Aridisols); kinds of soil parent materials (Entisols); degree of decomposition (Histosols); presence or absence of cryoturbation (Gelisols) Great Group – key soil properties that are additional controls on soil genesis (diagnostic horizons) Great Group – key soil properties that are additional controls on soil genesis (diagnostic horizons) Subgroup – central concept (Typic), intergrades, extragrades Subgroup – central concept (Typic), intergrades, extragrades Family – properties important to plant growth (texture, mineralogy, soil temperature regime, etc.) Family – properties important to plant growth (texture, mineralogy, soil temperature regime, etc.) Series – soil morphology Series – soil morphology

10 KategoriNamaKategoriNama PhylumPteridophytaOrderAlfisol KelasAngiospermaeSub-orderUdalf Sub-kelasDicotyledoneaeGreatgroupHapludalf OrderRosalesSub-group Aquic Hapludalf FamilyLeguminoseaeFamily Aquic Hapludalf, berlempung halus, Campuran, Aktif, Isohipertermik GenusTrifoliumSeriLape Species T. repens (Phase) Berbatu

11 Differentiating Characteristics in ST : Diagnostic epipedons Diagnostic epipedons Diagnostic subsurface horizons Diagnostic subsurface horizons Other diagnostic soil characteristics Other diagnostic soil characteristics Soil moisture and temperature regimes Soil moisture and temperature regimes

12 1. Epipedon horison penciri yg terbentuk di permukaan tanah. horison penciri yg terbentuk di permukaan tanah. tidak sinonim dg horizon A tidak sinonim dg horizon A dapat mencakup sebagian horizon B. dapat mencakup sebagian horizon B.

13 EPIPEDON Surface horizons Surface horizons Influenced strongly by biochemical and geochemical processes Influenced strongly by biochemical and geochemical processes Correspond with A, E, and sometimes upper B horizons Correspond with A, E, and sometimes upper B horizons Important in classifying soils Important in classifying soils

14 EPIPEDON Histik : Bahan organik (BO) tinggi (>75%), tebal 20 ‑ 40cm. Histik : Bahan organik (BO) tinggi (>75%), tebal 20 ‑ 40cm. Mollik : BO >1%, warna gelap dg value dan kroma 18cm, KB >50%. Mollik : BO >1%, warna gelap dg value dan kroma 18cm, KB >50%. Melanik : mirip Mollik, tetapi miliki sifat tanah andik Melanik : mirip Mollik, tetapi miliki sifat tanah andik Umbrik : seperti molik tetapi KB <50%. Umbrik : seperti molik tetapi KB <50%. Anthropik : seperti molik, tetapi mengandung >1500 ppm P2O5 larut dalam 1% as sitrat. Anthropik : seperti molik, tetapi mengandung >1500 ppm P2O5 larut dalam 1% as sitrat. Ochrik : warna terang (value dan kroma lembab >3), BO 3), BO <1% atau keras ‑ sangat keras dan masif. Plaggen : horizon buatan, akibat penggunaan pupuk kandang yg terus menerus, tebal >50cm, berwarna hitam. Plaggen : horizon buatan, akibat penggunaan pupuk kandang yg terus menerus, tebal >50cm, berwarna hitam. Folistik : tanah atas BO, jenuh < 30 hari Folistik : tanah atas BO, jenuh < 30 hari

15 Horison Penciri Bawah Horison Penciri Bawah Agrik : horizon iluviasi yg terbentuk krn pengaruh pengolahan tanah shg terjadi akumulasi sejumlah debu, liat, dan humus. Agrik : horizon iluviasi yg terbentuk krn pengaruh pengolahan tanah shg terjadi akumulasi sejumlah debu, liat, dan humus. Albik : horison berwarna pucat (E) dg value lembab >5. Albik : horison berwarna pucat (E) dg value lembab >5. Argillik : horison penimbunan liat; minimal mengandung liat >1.2 kali lebih banyak daripada kandungan liat di atasnya.Terdapat selaput liat. Argillik : horison penimbunan liat; minimal mengandung liat >1.2 kali lebih banyak daripada kandungan liat di atasnya.Terdapat selaput liat. Kalsik : horizon yg mengandung karbonat sekunder (CaCO 3 atau MgCO 3 ) tinggi, tebal >15cm. Kalsik : horizon yg mengandung karbonat sekunder (CaCO 3 atau MgCO 3 ) tinggi, tebal >15cm. Petrokalsik :horizon kalsik yang mengeras. Petrokalsik :horizon kalsik yang mengeras. Kambik : indikasi lemah adanya argillik atau spodik, tapi tidak memenuhi syarat kedua horizon tersebut. Kambik : indikasi lemah adanya argillik atau spodik, tapi tidak memenuhi syarat kedua horizon tersebut.

16 Horison Penciri Bawah (lanjutan) Gipsik : banyak mengandung gipsum (CaSO4) sekunder. Gipsik : banyak mengandung gipsum (CaSO4) sekunder. Petrogipsik :horizon gipsik yg mengeras. Petrogipsik :horizon gipsik yg mengeras. Natrik : horizon argillik yg banyak mengandung Na  Natrik : horizon argillik yg banyak mengandung Na  Oksik : horizon bertekstur agak kasar, KTK 30cm. Oksik : horizon bertekstur agak kasar, KTK 30cm. Salik : banyak mengandung garam sekunder mudah larut, tebal >15cm. Salik : banyak mengandung garam sekunder mudah larut, tebal >15cm. Sombrik : seperti umbrik, gelap, terjadi iluviasi humus tanpa Al, tidak terletak di bawah horizon albik. Sombrik : seperti umbrik, gelap, terjadi iluviasi humus tanpa Al, tidak terletak di bawah horizon albik. Spodik : horizon iluviasi seskuioksida bebas dan BO. Spodik : horizon iluviasi seskuioksida bebas dan BO. Sulfurik : horizon yg mengandung sulfat, pH,3.5, tdpt karatan jarosit. Sulfurik : horizon yg mengandung sulfat, pH,3.5, tdpt karatan jarosit. Plasik : padas tipis tersementasi senyawa. Fe, Mn dan BO Plasik : padas tipis tersementasi senyawa. Fe, Mn dan BO

17 KategoriNamaKategoriNama PhylumPteridophytaOrderAlfisol KelasAngiospermaeSub-orderUdalf Sub-kelasDicotyledoneaeGreatgroupHapludalf OrderRosalesSub-group Aquic Hapludalf FamilyLeguminoseaeFamily Aquic Hapludalf, berlempung halus, Campuran, Aktif, Isohipertermik GenusTrifoliumSeriLape Species T. repens (Phase) Berbatu TAKSONOMI TUMBUHAN vs TAKSONOMI TANAH

18 “ Soil Taxonomy " Degree of Weathering and B Horizon Development LittleSlightModerateLargeExtreme EntisolsAridisols InceptisolsAlfisols SpodosolsUltisols MollisolsOxisols Soils Defined by Special Constituent Materials Andisols Volcanic Ash Histosols Peat, Organic Matter Vertisols “Self-Mixing” Clay Soils Gelisols Soils on Permafrost

19 ALFISOL The central concept of Alfisols is that of soils that have an argillic, a kandic, or a natric horizon and a base saturation of 35% or greater. The central concept of Alfisols is that of soils that have an argillic, a kandic, or a natric horizon and a base saturation of 35% or greater. They typically have an ochric epipedon, but may have an umbric epipedon. They may also have a petrocalcic horizon, a fragipan or a duripan. They typically have an ochric epipedon, but may have an umbric epipedon. They may also have a petrocalcic horizon, a fragipan or a duripan.

20 ANDISOLS The central concept of Andisols is that of soils dominated by short-range- order minerals. The central concept of Andisols is that of soils dominated by short-range- order minerals. They include weakly weathered soils with much volcanic glass as well as more strongly weathered soils. They include weakly weathered soils with much volcanic glass as well as more strongly weathered soils. Hence the content of volcanic glass is one of the characteristics used in defining andic soil properties Hence the content of volcanic glass is one of the characteristics used in defining andic soil properties

21 ARIDISOL Aridisols is that of soils that are too dry for mesophytic plants to grow. They have either: (1) an aridic moisture regime and an ochric or anthropic epipedon and one or more of the following with an upper boundry within 100 cm of the soil surface: a calcic, cambic, gypsic, natric, petrocalcic petrogypsic, or a salic horizon or a duripan or an argillic horizon, or (2)A salic horizon and saturation with water within 100 cm of the soil surface for one month or more in normal years.

22 ENTISOLS The central concept of Entisols is that of soils that have little or no evidence of development of pedogenic horizons. The central concept of Entisols is that of soils that have little or no evidence of development of pedogenic horizons. Many Entisols have an ochric epipedon and a few have an anthropic epipedon. Many are sandy or very shallow. Many Entisols have an ochric epipedon and a few have an anthropic epipedon. Many are sandy or very shallow.

23 GELISOLS The central concept of Gelisols is that of soils that have permafrost within 100 cm of the soil surface and/or have gelic materials within 100 cm of the soil surface and have permafrost within 200 cm. The central concept of Gelisols is that of soils that have permafrost within 100 cm of the soil surface and/or have gelic materials within 100 cm of the soil surface and have permafrost within 200 cm. Gelic materials are mineral or organic soil materials that have evidence of cryoturbation (frost churning) and/or ice segeration in the active layer (seasonal thaw layer) and/or the upper part of the permafrost. Gelic materials are mineral or organic soil materials that have evidence of cryoturbation (frost churning) and/or ice segeration in the active layer (seasonal thaw layer) and/or the upper part of the permafrost.

24 HISTOSOLS HISTOSOLS The central concept of Histosols is that of soils that are dominantly organic. They are mostly soils that are commonly called bogs, moors, or peats and mucks. The central concept of Histosols is that of soils that are dominantly organic. They are mostly soils that are commonly called bogs, moors, or peats and mucks. A soil is classified as Histosols if it does not have permafrost and is dominated by organic soil materials. A soil is classified as Histosols if it does not have permafrost and is dominated by organic soil materials.

25 INCEPTISOLS The central concept of Inceptisols is that of soils of humid and subhumid regions that have altered horizons that have lost bases or iron and aluminum but retain some weatherable minerals. They do not have an illuvial horizon enriched with either silicate clay or with an amorphous mixture of aluminum and organic carbon. The central concept of Inceptisols is that of soils of humid and subhumid regions that have altered horizons that have lost bases or iron and aluminum but retain some weatherable minerals. They do not have an illuvial horizon enriched with either silicate clay or with an amorphous mixture of aluminum and organic carbon. The Inceptisols may have many kinds of diagnostic horizons, but argillic, natric kandic, spodic and oxic horizons are excluded. The Inceptisols may have many kinds of diagnostic horizons, but argillic, natric kandic, spodic and oxic horizons are excluded.

26 MOLLISOLS The central concept of Mollisols is that of soils that have a dark colored surface horizon and are base rich. Nearly all have a mollic epipedon. The central concept of Mollisols is that of soils that have a dark colored surface horizon and are base rich. Nearly all have a mollic epipedon. Many also have an argillic or natric horizon or a calcic horizon. A few have an albic horizon. Some also have a duripan or a petrocalic horizon. Many also have an argillic or natric horizon or a calcic horizon. A few have an albic horizon. Some also have a duripan or a petrocalic horizon.

27 OXISOLS The central concept of Oxisols is that of soils of the tropical and subtropical regions. They have gentle slopes on surfaces of great age. They are mixtures of quartz, kaolin, free oxides, and organic matter. The central concept of Oxisols is that of soils of the tropical and subtropical regions. They have gentle slopes on surfaces of great age. They are mixtures of quartz, kaolin, free oxides, and organic matter. For the most part they are nearly featureless soils without clearly marked horizons. Differences in properties with depth are so gradual that horizon boundaries are generally arbitrary. For the most part they are nearly featureless soils without clearly marked horizons. Differences in properties with depth are so gradual that horizon boundaries are generally arbitrary.

28 SPODOSOLS The central concept of Spodosols is that of soils in which amorphous mixtures of organic matter and aluminum, with or without iron, have accumulated. In undisrurbed soils there is normally an overlying eluvial horizon, generally gray to light gray in color, that has the color of more or less uncoated quartz. The central concept of Spodosols is that of soils in which amorphous mixtures of organic matter and aluminum, with or without iron, have accumulated. In undisrurbed soils there is normally an overlying eluvial horizon, generally gray to light gray in color, that has the color of more or less uncoated quartz. Most Spodosols have little silicate clay. The particle-size class is mostly sandy, sandy-skeletal, coarse-loamy, loamy, loamy- skeletal, or coarse-silty. Most Spodosols have little silicate clay. The particle-size class is mostly sandy, sandy-skeletal, coarse-loamy, loamy, loamy- skeletal, or coarse-silty.

29 ULTISOLS The central concept of Ultisols is that of soils that have a horizon that contains an appreciable amount of translocated silicate clay (an argillic or kandic horizon) and few bases (base saturation less than 35 percent). The central concept of Ultisols is that of soils that have a horizon that contains an appreciable amount of translocated silicate clay (an argillic or kandic horizon) and few bases (base saturation less than 35 percent). Base saturation in most Ultisols decreases with depth. Base saturation in most Ultisols decreases with depth.

30 VERTISOLS The central concept of Vertisols is that of soils that have a high content of expending clay and that have at some time of the year deep wide cracks. The central concept of Vertisols is that of soils that have a high content of expending clay and that have at some time of the year deep wide cracks. They shrink when drying and swell when they become wetter. They shrink when drying and swell when they become wetter.


Download ppt "DASAR ILMU TANAH Klasifikasi Tanah Klasifikasi Tanah."

Presentasi serupa


Iklan oleh Google