Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

PERPETAAN for UNY. KERANGKA DASAR PEMETAAN 1. KERANGKA DASAR HORISONTAL (KDH) Posisi lateral titik-titik Kerangka Peta [Mempunyai koordinat bidang datar.

Presentasi serupa


Presentasi berjudul: "PERPETAAN for UNY. KERANGKA DASAR PEMETAAN 1. KERANGKA DASAR HORISONTAL (KDH) Posisi lateral titik-titik Kerangka Peta [Mempunyai koordinat bidang datar."— Transcript presentasi:

1 PERPETAAN for UNY

2 KERANGKA DASAR PEMETAAN 1. KERANGKA DASAR HORISONTAL (KDH) Posisi lateral titik-titik Kerangka Peta [Mempunyai koordinat bidang datar (X, Y)], Metode pengukurannya : Triangulasi, Polygon. 2. KERANGKA DASAR VERTIKAL (KDV) Posisi vertikal / ketinggian (Z) titik-titik Kerangka Peta, umumnya sebagai bidang datum permukaan air laut rata-rata. Metode pengukurannya : Sipat datar memanjang Penentuan Titik Kerangka Dasar : a. Luas daerah yang dipetakan b. Bentuk daerah yang dipetakan c. Kondisi daerah yang dipetakan (tertutup/terbuka/relief)

3 Mengingat fungsi dari Titik Kerangka Dasar, maka pemasangannya : a.Ditempatkan menyebar merata di seluruh daerah yang dipetakan dengan kerapatan tertentu. b. Terbuat dari bahan yang tahan lama (beton, kayu). c.Pemasangannya cukup kuat dilokasi yang stabil & aman. d.Diberi kode tertentu supaya mudah dikenal. Pada prakteknya dilapangan titik-titik KDH dan titik-titik KDV tidak dibuat sendiri-sendiri, akan tetapi menjadi satu titik.

4 KERANGKA DASAR HORISONTAL Sejumlah titik yang diketahui koordinatnya dalam sistem koordinat tertentu  Koordinat Kartesian bidang datar (sebagian dari permukaan Elipsoida) Y X o XA YA Z A P Q RS OoAo Permukaan Bumi PQRS : Bidang datar,bag Elipsoid Sb. Y : Grs meridian melalui O Sb. X : Grs tegak lurus Y di titik O Grs Oo O : Grs normal bid. PQRS Grs AoA : Grs normal bid. PQRS (AoA sejajar Oo O) XA,YA : Koordinat planimetris titik Ao. Z : Ketinggian Ao diatas bidang PQRS. ARTI POSISI HORISONTAL TITIK Gbr. 1

5 SISTIM KOORDINAT KARTESIAN A B C D +XA +YA +XD - YD - XC - YC + YB - XB Y + Y- X+ X- Kwadran I Kwadran II Kwadran III Kwadran IV Gbr 2

6 Dalam plane surveying, posisi titik dimuka Bumi, spt titik Ao (Gbr diatas), pada bid. Datar dinyatakan oleh Absis XA dan Ordinat YA. Sebagai sumbu Y dlm Sistim Koordinat Kartesian, bidang datar adalah meridian yang dipilih melalui satu titik (titik O pd Gbr diiatas). Titik tsb dinyatakan sebagai titik awal sistim koordinatnya. Sebagai sumbu X adalah garis tegak lurus sumbu Y di titik O. ARTI JARAK P Q R S Y XO A B Bo Ao Permukaan Bumi B’ AB : Jarak mendatar AoBo : Jarak miring B’ Bo : Beda tinggi Gbr. 3

7 Dari Gbr diatas, antara sudut miring, jarak miring, jarak mendatar dan beda tinggi terdapat hubungan matematis sebagai berikut : Jika sudut miring BoAoB’ = θ, komplemennya disebut sudut zenith (z), maka z = (90 – θ), maka : AoB’ = AB = AoBo Cos θ = AoBo Sin z BoB’ = AoBo Sin θ = AoBo Cos z (AoBo) 2 = (AB) 2 + (BoB’) 2. ARTI SUDUT MENDATAR DAN SUDUT JURUSAN Yang disebut sudut mendatar di Ao (Gbr di bawah) adalah sudut yg dibentuk oleh bidang-bidang normal AoBoBA dengan AoCoCA, sudut BAC disebut sudut mendatar (BAC = β). Sudut antara sisi AB dengan garis Y’ yg sejajar dengan sumbu Y disebut sudut jurusan sisi AB = α AB, sudut jurusan sisi AC = αAC.

8 Y X Y’ A B C Ao Bo Co O P Q RS β αAB αAC Gbr. 4

9 SUDUT JURUSAN = SUDUT ARAH = AZIMUTH Sudut horisontal yang diukur dari Utara searah jarum ke suatu titik / garis tertentu (harganya dari 0 0 – ). Berdasarkan orientasi Utara, maka dikenal : Azimuth Magnetis  orientasi Utara Magnetis Azimuth Geografis/Azimuth Astronomis  Orientasi Utara Geografis. O U A B C D αOA αOB αOC αOD Gbr. 5

10 Dari Gbr. 4 tsb diatas Sudut Mendatar (β ) = αAC – αAB. Jika Koordinat titik A (XA, YA), jarak mendatar dari A ke B = DtAB, dari A ke C = DtAC, azimuth dari A ke B = αAB, dari A ke C = αAC, maka : XB = XA + DtAB SinαAB YB = YA + DtAB CosαAB XC = XA + DtAC SinαAC YC = YA + DtAC CosαAC Jika koordinat-koordinat titik-titik A, B dan C diketahui besarnya XA,YA; XB,YB; XC,YC maka : DtAB = (XB – XA)/SinαAB = (YB – YA)/CosαAB = V (XB – XA) 2 + (YB-YA) 2 αAB = Tan -1 (XB – XA)/(YB – YA) DtAC = (XC – XA)/SinαAC = (YC – YA)/CosαAC = (XC – XA) 2 + (YC – YA) 2 αAC = Tan -1 (XC – XA)/(YC – YA)

11 - Untuk menghitung azimuth sisi berikutnya dari sudut sebelumnya, digunakan rumus : αBC = αAB + β1 – Jika jumlah titik sudutnya adalah n titik, maka : n α akhir = α awal + Σ βi – n i A B C αAB β1 αBC Y Y

12 METODA PENENTUAN KERANGKA HORISONTAL 1. Metoda Polygoon 2. Metoda Triangulasi 3. Metoda Trilaterasi Metoda Polygoon Salah satu cara penentuan posisi horisontal banyak titik dimana titik satu dengan lainnya dihubungkan satu sama lain dengan pengukuran jarak, azimuth dan sudut sehingga membentuk rangkaian titik-titik (polygoon). Ditjinjau dari cara menyambungkan titik satu dengan lainnya, maka polygoon dibedakan : a. Polygoon tertutup (loop) b. Polygoon terikat sempurna c. Polygoon terikat sebagian d. Polygoon lepas e. Polygoon cabang

13 A POLIGON TERTUTUP A B C D 1 2 α AB POLIGON TERIKAT SEMPURNA 5 β1β1 β2β2 β3β3 β4β4 αA1 β1β1 β2β2 β3β3 β4β4 β5β5 β6β6 A : Titik Ikat (Ttk. Kontrol) 1, 2, 3.. : Titik Poligon αA1 : Azimuth A-1(Az. Awal) Β : Sudut mendatar (sudut dalam AB & CD : Titik Ikat (Ttk Kontrol) 1, 2 : Titik Poligon Β : Sudut mendatar αAB : Azimuth AB (Az. Awal)

14 POLIGON TERIKAT SEBAGIAN A B α AB α B1 β A, B : Titik Ikat (BM) α : Asimuth β : Sudut mendatar 1, 2, 3 : Titik Poligon POLIGON LEPAS POLIGON CABANG A B a 1b

15 Poligon Tertutup

16 BM

17 KASUS PERHITUNGAN

18

19

20

21

22

23

24

25

26

27 UNSUR – UNSUR PETA JUDUL JUDUL ORIENTASI ORIENTASI SKALA SKALA LEGENDA LEGENDA IDENTITAS ; PEMBUAT, TANGGAL IDENTITAS ; PEMBUAT, TANGGAL KOORDINAT KOORDINAT

28 KOMPUTER PENGOLAHAN EXCEL PENGOLAHAN EXCEL PENGOLAHAN DENGAN PERANGKAT LUNAK (AUTOCAD DAN QUICKSURF) PENGOLAHAN DENGAN PERANGKAT LUNAK (AUTOCAD DAN QUICKSURF)


Download ppt "PERPETAAN for UNY. KERANGKA DASAR PEMETAAN 1. KERANGKA DASAR HORISONTAL (KDH) Posisi lateral titik-titik Kerangka Peta [Mempunyai koordinat bidang datar."

Presentasi serupa


Iklan oleh Google